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Abstract—High-mobility scenarios have increasingly attracted
attention due to their relevance in modern wireless communica-
tion systems, where doubly selective fading (DSF) significantly
degrades transmission reliability. To address this issue, we pro-
pose a transceiver that combines orthogonal time frequency space
(OTFS) modulation with differential chaos shift keying (DCSK) to
provide robustness against DSF. In this design, mapping symbols
onto the OTFS delay-Doppler (DD) grid exploits DD diversity,
delivering high reliability under DSF and achieving markedly
lower bit error rate than conventional schemes. To fully realize
these advantages, this paper devises an alternating direction
method of multipliers (ADMM)-based signal detection method
tailored specifically for OTFS-DCSK. Our solution employs the
least squares QR (LSQR) algorithm to leverage channel sparsity,
along with truncated singular value decomposition (SVD) to
exploit the rank-1 structure of the transmitted symbols, achieving
effective noise reduction. Both LSQR and SVD exhibit acceptable
complexity, resulting in a computationally efficient detector.
Simulation results verify that the developed ADMM algorithm
significantly improves reliability, yielding lower normalized mean
squared error and bit error rate compared to existing approaches
under DSF channels.

Index Terms—Orthogonal time frequency space; differential
chaos shift keying; alternating direction method of multipliers;
high-mobility scenarios; doubly selective fading; reliability.

I. INTRODUCTION

Wireless communication systems are particularly suscepti-
ble to attacks by malicious users due to their open access and
broadcasting nature. Chaotic communication has emerged as
a technique to enhance the security of wireless transmissions
by leveraging the properties of chaotic sequences, such as ex-
treme sensitivity to initial conditions and inherent randomness,
which make the signals unpredictable and difficult to intercept
[1], [2]. These characteristics make chaotic communication
techniques extensively applicable in data transmission across
various domains, including ultra-wide-band (UWB) [2], [3],
power line communication (PLC) [4], and vehicle-to-vehicle
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(V2V) communications [5]. Chaotic modulation, which ex-
ploits chaotic sequences to modulate information bits, can be
divided into coherent and non-coherent types. The main dis-
tinction lies in the necessity for chaotic sequence regeneration
at the receiver in the former, whereas the latter has no such
requirement, making it simpler and more prevalently utilized
[6], [7].

Among various non-coherent chaotic modulation tech-
niques, differential chaos shift keying (DCSK) has garnered
significant interest [7]. DCSK involves transmitting a reference
chaotic sequence followed by an information-bearing chaotic
sequence, which is created by modulating the reference se-
quence with binary phase shift keying (BPSK) symbols. This
approach obviates the need for chaotic waveform regeneration
at the receiver, thereby eliminating the requirement for chaos
synchronization and substantially reducing system complexity.
DCSK has proven effective in delivering satisfactory bit error
rate (BER) in diverse environments such as UWB, PLC, and
V2V communications, ensuring reliable data transmission [2].
However, the transmission efficiency of DCSK is relatively
low because it necessitates sending two sequences in separate
time slots for a single symbol, as well as complex delay line
circuits [8].

To improve the transmission efficiency, several M -ary mod-
ulation schemes using Hilbert transform [9]–[11], Walsh code
[12], and index modulation [13] have been introduced. Never-
theless, they do not solve the issue with delay lines. A viable
alternative to eliminate delay lines is to distribute different
sequences across various subcarriers rather than different time
slots, a strategy central to multi-carrier (MC) transmission. In
MC-based DCSK systems, a single reference sequence can
demodulate multiple information-bearing sequences, signifi-
cantly boosting transmission efficiency compared to traditional
DCSK systems [14]. Additionally, to reduce MC-DCSK com-
plexity, orthogonal frequency division multiplexing (OFDM)
is employed via fast Fourier transform (FFT) [15], assuming
that the number of subcarriers is power of 2.

While OFDM offers a flexible framework for mitigating
multipath fading in DCSK systems [16], it is notably sensitive
to Doppler shifts, or time-selective fading, which arises from
the relative motion between the transmitter and receiver. This
is particularly problematic in high-mobility scenarios [17]
such as V2V communications [5], [18]. Doppler shifts can
induce inter-carrier interference (ICI) [19], adversely affecting
the performance of OFDM-based DCSK systems. To miti-
gate carrier frequency offsets caused by Doppler shifts, [20]
presents a pre-coding OFDM-DCSK system, but it leads to a
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duplication of information symbols, hence reducing spectral
efficiency. Moreover, doubly selective fading (DSF), which
combines the effects of Doppler shifts and multipath fading,
can severely compromise the reliability of OFDM-DCSK
systems. A novel approach in [21] employs singular value
decomposition (SVD)-based pre-coding and permutation to
address DSF in OFDM-DCSK systems. However, this solution
necessitates that both the transmitter and receiver possess
channel state information (CSI), which can increase the overall
system complexity.

By contrast, orthogonal time frequency space (OTFS) mod-
ulation offers advantages over OFDM in dealing with high-
mobility [22]. By utilizing the inverse symplectic finite Fourier
transform (ISFFT) and symplectic finite Fourier transform
(SFFT), OTFS transmits the symbols in the delay-Doppler
(DD) domain rather than the time-frequency (TF) domain.
Owing to the signal representation in the DD domain, OTFS is
inherently more robust to Doppler shifts, making it a suitable
choice for high-mobility scenarios [23]. Moreover, OTFS
efficiently copes with multipath propagation by capturing the
channel’s delay spread in the DD domain, leading to a reduc-
tion in inter-symbol interference (ISI) and improved perfor-
mance [24]. In fact, OTFS has emerged as a promising wave-
form candidate for next-generation communications [25], with
recent research covering performance benchmarking against
OFDM [26], advanced signal processing [27], multiple-input
multiple-output enhancements [28], [29], spatial modulation
integration [30], [31], and practical implementation aspects
[32].

The DD representation of the OTFS signal exhibits a block-
based structure, akin to the OFDM-DCSK signal. In the
OTFS scheme, information symbols are mapped onto a two-
dimensional DD grid, whereas OFDM-DCSK systems also
employ a similar block-based structure, where data are trans-
mitted over multiple orthogonal subcarriers, each modulated
with a chaotic sequence. This similarity naturally motivates the
application of OTFS modulation to DCSK-based systems to
effectively combat DSF. OTFS achieves markedly lower BER
than OFDM in DSF channels by exploiting full DD diversity
[33]. Furthermore, [34] claims that OTFS can achieve high
reliability over DSF channels due to the domain adaptivity.
By integrating OTFS with DCSK, the resultant system lever-
ages OTFS’s robustness in dynamic channels to significantly
improve reliability. In addition, due to OTFS’s block-based
structure, only one cyclic prefix (CP) is required to mitigate
ISI [24]. In comparison, OFDM-DCSK modulation requires
multiple CPs, thus making OTFS-based systems exhibit in-
creased spectral efficiency in comparison to their OFDM-based
counterparts.

Although OTFS effectively combats DSF, signal detection
at the receiver presents significant challenges. The channel re-
sponse matrix of the OTFS transmission model may have large
dimensions, which complicates the minimum mean square
error (MMSE) based detection in terms of computational
requirements. Markov chain Monte Carlo (MCMC) sampling,
utilized in OTFS signal detection [35], also faces substantial
complexity issue because it fails to leverage the sparsity of the
OTFS channel response matrix. Various methods have been

suggested to manage OTFS signal detection complexity by
exploiting this sparsity, such as message passing (MP) [24]
and maximal ratio combining (MRC) [36]. Nevertheless, these
schemes require a finite-length codebook for modulated digital
symbols, which is incompatible with the continuous nature of
chaotic symbols used in DCSK systems. Few studies focus
on using OTFS to enhance the reliability of DCSK systems
over DSF channels. [37] designs an OTFS-DCSK system to
counteract Doppler shifts. However, this approach requires
each information-bearing sequence to have a unique reference
sequence, resulting in a large symbol matrix and lower trans-
mission efficiency. While [38] addresses the efficiency issue,
its SVD-based symbol detector does not take into account the
sparsity of the channel response matrix, potentially limiting
its performance over DSF channels.

Since the OTFS-based DCSK system modulates multiple
information-bearing sequences with one reference sequence,
the resultant signal represented in matrix form has rank-1.
Fully exploiting this property significantly reduces noise and
increases system reliability [39]–[41]. This paper proposes
integrating OTFS with DCSK to boost reliability over DSF
channels and ensure high robustness against multipath fading
and Doppler shifts. The system adopts OTFS modulation using
ISFFT at the transmitter and SFFT at the receiver. To decode
signals from the received OTFS-DCSK transmission frame,
we introduce an alternating direction method of multipliers
(ADMM)-based signal detector where the least squares QR
(LSQR) [42] is adopted to handle the OTFS channel response
matrix of large size, leveraging its sparsity to reduce compu-
tational complexity. Furthermore, SVD is utilized to reduce
noise in the received signal. LSQR and SVD are alternately
performed until the stopping criterion is met. Adopting this
ADMM-based detector, the system delivers outstanding relia-
bility performance over DSF channels.

Our novelty and technical contributions are listed as follows:

1) We design an OTFS-DCSK transceiver structure to en-
hance system reliability over DSF channels.

2) We propose an ADMM-based signal detector that lever-
ages the sparsity of the channel response matrix and the
rank-1 property of the transmitted noise-free data matrix.

3) The convergence of the OTFS-DCSK signal detection
algorithm is studied. The BER is derived for DSF chan-
nel and the diversity gain is also analyzed. Additionally,
we study the spectral efficiency and complexity, with
comparison with the competing methods.

4) We conduct extensive simulation study for our pro-
posed scheme. According to the numerical results, our
algorithm exhibits faster convergence speed and attains
lower normalized mean squared error (NMSE) and BER
compared to existing methods over DSF channels.

The organization of the paper is as follows: Section II
introduces the OTFS-DCSK transceiver structure, featuring
signal detection. The corresponding ADMM-based algorithm
is detailed in Section III. Section IV analyzes convergence,
BER, diversity gain, spectral efficiency, and complexity. Sec-
tion V presents simulation results to assess the system perfor-
mance by comparing with competing approaches. Section VI
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concludes the paper.

II. PROPOSED OTFS-DCSK TRANSCEIVER

In this section, we present the structure of our OTFS-DCSK
transceiver.

A. Transmitter Design
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Fig. 1. Block diagram of OTFS-DCSK transmitter.

Fig. 1 depicts the block diagram of the OTFS-DCSK
transmitter. The main modification compared to OFDM-DCSK
[15] is the addition of ISFFT before the Heisenberg transform,
where the Heisenberg transform is implemented by inverse
fast Fourier transform (IFFT). The chaos generator initially
produces chaotic sequences using the second-order Chebyshev
polynomial function (CPF). This method is characterized by its
high sensitivity to initial conditions and good pseudorandom
properties, making it suitable for generating chaotic sequences
in communication systems. The CPF is:

xk+1 = 1− 2x2
k, xk ∈ (−1, 0) ∪ (0, 1) (1)

where xk represents the kth chaotic chip and should strictly
remain within (−1, 0) or (0, 1), 0 ≤ k ≤ β − 1 and β
denotes the sequence length. Chaotic modulation involves
multiplying this sequence by the BPSK data symbols, which
carry information bits after the serial-to-parallel (S/P) con-
version. It is worth mentioning that as an extension, high-
order modulation schemes can be adopted in the input data
stream. For the kth chip on the nth subcarrier, the expression
is dn,k = snxk. Here, indices 1 ≤ n ≤ N − 1 correspond
to information-bearing sequences, while n = 0 signifies the
reference sequence with d0,k = xk and N denotes the number
of chaos sequences. {dn,k} for 0 ≤ k ≤ β−1, 0 ≤ n ≤ N−1
forms an OTFS-DCSK symbol in the DD domain, which can
be represented as matrix form, denoted by DDD:

DDD = cccrsss
T ∈ Rβ×N (2)

where R denotes the real number set, (·)T denotes the trans-
pose, cccr = [c0, c1, . . . , cβ−1]

T ∈ Rβ is the reference chaos
sequence, and sss = [1, s1, . . . , sN−1]

T ∈ RN is the BPSK
symbol vector. Apparently, DDD is a rank-1 matrix, and this
property can be utilized for noise reduction. Following chaotic
modulation, ISFFT is performed to map {dn,k} in the DD
domain to {pk′,n′} in the TF domain. The ISFFT process is
realized as [23]:

pk′,n′ =
1√
Nβ

N−1∑
n=0

β−1∑
k=0

dn,ke
j2π

(
n′n
N − k′k

β

)
(3)

where n, k, n′, and k′ denote the Doppler, delay, time, and
frequency indices, respectively, 0 ≤ n′ ≤ N − 1, 0 ≤ k′ ≤
β−1. Subsequently, the Heisenberg transform is employed to
convert the TF signal into the time domain. The Heisenberg
transform generalizes the inverse discrete Fourier transform
(IDFT), making the IDFT its special case under the assumption
of rectangular pulse shape. When the number of sample points
is a power of 2, the IDFT can be efficiently computed using
the IFFT. The IFFT applied to pk′,n′ for different values of k′

is given by:

si,n′ =
1√
β

β−1∑
k′=0

pk′,n′e
j2πk′i

β (4)

where {si,n′} for 0 ≤ i ≤ β − 1, 0 ≤ n′ ≤ N − 1 forms an
OTFS-DCSK symbol in the TF domain.

Chaotic spreading disperses signal power over a wide fre-
quency range, driving the information-bearing symbols below
the average noise floor. The resulting wideband spectrum
substantially improves resilience to narrowband interference
and jamming [43], allowing the system to reject both inten-
tional and unintentional interference, and maintain reliable
communication in hostile environments. By integrating OTFS
with DCSK, the proposed OTFS-DCSK scheme retains OTFS
robustness in DSF channels while offering spread-spectrum
interference suppression. Compared with conventional OTFS
which relies solely on DD mapping, OTFS-DCSK provides
stronger immunity to interference and jamming, enhancing
overall performance in DSF conditions.

At the end of the transmitter, the parallel data streams are
converted to a serial format by the parallel-to-serial (P/S)
converter. In the serial stream, {si,n′} with smaller n′ is
transmitted first. For the same n′, the values of i are compared,
and the symbols with smaller i are transmitted first. After the
P/S conversion, a CP is added to mitigate ICI and ISI. For one
β ×N OTFS-DCSK symbol block, only one CP is required,
while for one N × β OFDM-DCSK symbol block [15], β
CPs are needed. This indicates higher spectral efficiency of
OTFS-DCSK compared to OFDM-DCSK, as the length of a
single CP in both systems is identical. After appending CP, the
symbols are transmitted through the wireless channels. This
work assumes that the channels remain time-invariant over
one OTFS-DCSK TF symbol and its CP.

B. Receiver Design
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Fig. 2. Block diagram of OTFS-DCSK receiver.

The receiver structure incorporating the ADMM-based sig-
nal detection is illustrated in Fig. 2. The receiver first removes
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the CP from the received data and performs S/P conversion.
ri,n′ denotes the symbol in the ith data stream and the
n′th time slot. The Wigner transform applied to ri,n′ for
different values of i generates the TF domain signal. Under
the assumption of rectangular pulse shape, the discrete Fourier
transform (DFT) can be viewed as a special case of the Wigner
transform. When the number of sample points is a power of
2, the DFT can be efficiently computed using the FFT as:

qk′,n′ =
1√
β

β−1∑
i=0

ri,n′e
−j2πik′

β . (5)

After the FFT, SFFT is applied, given by [23]:

wn,k =
1√
Nβ

N−1∑
n′=0

β−1∑
k′=0

qk′,n′e
−j2π

(
n′n
N − k′k

β

)
(6)

where wn,k is the (k, n) entry of WWW ∈ Cβ×N with C being
the complex number set.

After the SFFT, the ADMM algorithm is employed for
signal detection. Before depicting the detection process, we
introduce the channel model first, and present the OTFS
modulation and demodulation processes in matrix forms. We
assume that a control channel is used to obtain CSI at the
receiver and the channel is time-invariant during one OTFS-
DCSK symbol. Denoting si,n′ and ri,n′ as the (i, n′) entry
of SSS ∈ Cβ×N and RRR ∈ Cβ×N respectively, the DSF channel
model is:

rrr = vec(RRR) =HHHvec(SSS) + vec(NNN) =HHHsss+nnn (7)

where vec(·) is the vectorization operator in column-major
order, sss = vec(SSS), nnn = vec(NNN), HHH ∈ CNβ×Nβ is the channel
response matrix, and NNN ∈ Cβ×N is the Gaussian noise matrix.
HHH has the form of [44]:

HHH =

M∑
m=1

hmTTT τm∆∆∆fm (8)

where hm is a complex Gaussian distributed fading factor, τm
is the normalized delay and fm is the normalized Doppler shift
of the mth path. Furthermore, TTT τm and ∆∆∆fm are expressed as:

TTT τm =

[
000 IIIτm

IIINβ−τm 000

]
(9a)

∆∆∆fm = diag
([

e
j2πfm·lCP

Nβ , e
j2πfm·(lCP+1)

Nβ ,

. . . , e
j2πfm·(lCP+Nβ−1)

Nβ

]) (9b)

where III is the identity matrix, diag(·) transforms a vector to
a diagonal matrix, and lCP is the length of CP. Assuming that
rectangular pulses are transmitted, the input-output relation-
ship of the transceiver is given by [44]:

www = vec(WWW ) = (FFFN ⊗ IIIβ)rrr = (FFFN ⊗ IIIβ)(HHHsss+nnn)

= (FFFN ⊗ IIIβ)(HHH(FFFH
N ⊗ IIIβ)vec(DDD) +nnn) = H̃HHddd+ ñnn

(10)

where ⊗ is the Kronecker product, (·)H denotes the Hermitian
transpose, FFFN is the N -point DFT matrix, and

sss = (FFFH
N ⊗ IIIβ)vec(DDD) (11a)

ddd = vec(DDD) = vec(cccrsss
T ) = (IIIN ⊗ cccr)sss (11b)

[FFFN ]n,n′ =
1√
N

e−
j2π·(n−1)·(n′−1)

N (11c)

H̃HH = (FFFN ⊗ IIIβ)HHH(FFFH
N ⊗ IIIβ) (11d)

ñnn = (FFFN ⊗ IIIβ)nnn (11e)

where [·]n,n′ denotes the (n, n′) entry of a matrix. Since the
receiver has access to the CSI, H̃HH ∈ CNβ×Nβ is known.
Although the size of H̃HH is large, according to (8), (9a), (9b),
and (11d), H̃HH is sparse where large proportion of its entries are
zeros [24]. Moreover, as per (2), the rank of original noise-
free symbol matrix DDD is 1. Consequently, by exploiting the
sparsity of H̃HH and the rank-1 property of DDD, the ADMM-based
OTFS-DCSK signal detector is employed to recover the rank-
1 matrix CCC ∈ Rβ×N from the received symbol matrix WWW ,
which will be detailed in next section. Each column vector
of CCC represents a chaotic sequence, with the first one, ccc0,
serving as the reference sequence, and the remaining ones
being information-bearing sequences. Finally, the information
symbol s̄n is obtained through chaotic demodulation as:

s̄n = sgn
(
cccT0 · cccn

)
, 1 ≤ n ≤ N − 1 (12)

where sgn(·) is the sign function. The information bits are
then decoded from the demodulated BPSK symbols.

III. ADMM-BASED OTFS-DCSK SIGNAL DETECTION

This section presents the proposed ADMM-based OTFS-
DCSK signal detection algorithm. Specifically, ADMM is an
optimization framework that decomposes complex problems
into simpler subproblems, solving them iteratively to achieve
convergence. It is particularly effective for structured opti-
mization problems, making it suitable for OTFS-DCSK signal
detection. The key steps involve updating primal variables by
solving separate subproblems and adjusting the dual variable
iteratively. This approach efficiently exploits the sparsity and
structure of the OTFS channel response matrix, leading to
improved detection performance.

According to (10), the target objective function is expressed
as ∥www − H̃HHxxx∥22 in the context of Gaussian noise, where ∥ · ∥2
denotes the ℓ2-norm of a vector. Considering the constraints,
as indicated in (11b), vectorizing DDD results in ddd, where DDD is
a real rank-1 matrix. Consequently, the real vector xxx should
represent the vectorized form of a rank-1 matrix, for instance,
xxx = vec(uuuvvvT ) ∈ RNβ . With these considerations, we establish
the optimization problem based on (11d) as:

min
xxx,uuu,vvv

∥www − H̃HHxxx∥22 s.t. xxx = vec(uuuvvvT ) (13)

where uuu ∈ Rβ , vvv ∈ RN and xxx are primal variables for
solving the optimization problem. Since real symbols are
used for BPSK and both www and H̃HH are complex, to ac-
celerate computation and restrict the detected xxx to a real-
valued vector, we can convert www and H̃HH into real-valued
forms when BPSK symbols are transmitted, as follows:

w̄ww =

[
ℜ(www)
ℑ(www)

]
(14a) H̄HH =

[
ℜ(H̃HH)

ℑ(H̃HH)

]
(14b)
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where ℜ(·) takes real parts of complex numbers and ℑ(·) takes
imaginary parts. Then (13) is equivalent to:

min
xxx,uuu,vvv

∥w̄ww − H̄HHxxx∥22 s.t. xxx = vec(uuuvvvT ). (15)

The augmented Lagrangian for (15) is constructed as:

Lρ(xxx,zzz,λλλ) = ∥w̄ww − H̄HHxxx∥22 + λλλT (xxx− zzz) +
ρ

2
∥xxx− zzz∥22 (16)

where zzz = vec(uuuvvvT ) is also the primal variable to be opti-
mized in ADMM, λλλ is the dual Lagrange multiplier vector and
ρ > 0 is the penalty parameter. The introduction of ρ in (16)
ensures better numerical stability and convergence properties.
A well-chosen ρ accelerates convergence by appropriately
scaling the augmented Lagrangian terms, preventing slow
updates and oscillations in the iterative process. In particular,
ρ influences the step size of the primal and dual updates,
allowing the algorithm to efficiently enforce the equality con-
straints while maintaining robustness in noisy environments.
Subsequently, the general ADMM process is depicted as:

xxxl+1 = argmin
xxx

(
∥w̄ww − H̄HHxxx∥22 +

ρl
2

∥∥∥∥xxx− zzzl +
λλλl

ρl

∥∥∥∥2
2

)
(17a)

zzzl+1 = argmin
zzz

(
ρl
2

∥∥∥∥xxxl+1 − zzz +
λλλl

ρl

∥∥∥∥2
2

)
s.t. zzz = vec(uuuvvvT ).

(17b)

λλλl+1 = λλλl + ρl(xxx
l+1 − zzzl+1) (17c)

ρl+1 = µρl (17d)

where l is the iteration number, and µ > 1 is a constant.
Equation (17a) is a convex least squares (LS) problem, and

the optimal solution is obtained by solving:

∇xxxLρl
(xxx,zzzl,λλλl) = 2H̄HH

T
H̄HHxxx−2H̄HH

T
w̄ww+ρl

(
xxx− zzzl +

λλλl

ρl

)
= 0

(18)
and then we have:

(2H̄HH
T
H̄HH + ρlIII)xxx = 2H̄HH

T
w̄ww + ρlzzz

l − λλλl. (19)

Since 2H̄HH
T
H̄HH + ρlIII is sparse, the LS problem in (17a) can

be solved by LSQR algorithm efficiently [42]. We evaluate

200 400 600

100

200

300

400

500

600
0

0.5

1

1.5

2

2.5

3

(a) Integer Doppler.

200 400 600

100

200

300

400

500

600
0

0.5

1

1.5

2

2.5

(b) Fractional Doppler.

Fig. 3. Magnitudes of elements in 2H̄HH
T
H̄HH + ρlIII .

the sparsity of 2H̄HHT
H̄HH + ρlIII by plotting the magnitudes of its

elements, where Fig. 3(a) represents the integer Doppler case
and Fig. 3(b) denotes the fractional Doppler case. The param-
eters are set as N = 32, β = 20, and the number of channel
paths is 4. In the integer Doppler case, τm = fm = m − 1.

In the fractional Doppler case, τm ∼ U{1, 2, . . . , β − 1} and
fm ∼ U(0, fmax) for 1 < m ≤ M , with τ1 = f1 = 0,
where U{·} denotes the discrete uniform distribution and
U(·) represents the continuous one. The maximum normalized
Doppler shift fmax is set to 0.5 in a system with a central
frequency of 4 GHz, subcarrier spacing of 3.75 kHz, maximum
speed of 506.25 km/h, and maximum Doppler shift of 1.875
kHz [45]. In both Figs. 3(a) and 3(b), most of elements
have magnitudes nearly equal to 0, indicating the sparsity of
2H̄HH

T
H̄HH + ρlIII in both integer and fractional Doppler, demon-

strating our applicability to both cases. Since 2H̄HH
T
H̄HH + ρlIII

is originated from H̄HH in (14b), and H̄HH is originated from
H̃HH in (11d), according to [44], only M elements in each
row and column of H̃HH have non-zero values, leading to the
sparsity of H̄HH and 2H̄HH

T
H̄HH+ρlIII . Moreover, the main diagonal

elements represent the values of the main path, and the
elements on remaining sub-diagonals in Fig. 3 correspond
to the values of the other 3 paths. By utilizing the sparsity,
the proposed ADMM algorithm efficiently detects signals
across different paths and combines them to achieve maximum
diversity gain, thereby mitigating the performance degradation
caused by fading. Additionally, the dimensions of 2H̄HHT

H̄HH+ρlIII
are Nβ × Nβ, where Nβ denotes the number of chaos-
modulated chips in one OTFS-DCSK symbol. If N and β
increase, the computational complexity becomes high when
matrix sparsity is not exploited, leading to long latency in
OTFS signal detection. Therefore, by leveraging the sparsity
of 2H̄HH

T
H̄HH + ρlIII , our ADMM-based algorithm enables signal

detection with acceptable complexity.

Since zzz = vec(uuuvvvT ), we convert (17b) as:

ZZZl+1 = argmin
ZZZ

(∥∥∥XXX l+1
λλλl,ρl

−ZZZ
∥∥∥2
F

)
s.t. ZZZ = uuuvvvT

(20)

where ∥ · ∥F denotes the Frobenius norm, XXX l+1
λλλl,ρl

=

vec−1
β,N (xxxl+1+λλλl/ρl) with vec−1(·) being the reverse process

of vectorization whose subscript denotes the number of rows
and columns of the resultant matrix, and zzzl+1 = vec(ZZZl+1).
Subsequently, truncated SVD is applied to solve (20):

ZZZl+1
∗ = σl+1,1uuu

l+1
1 (vvvl+1

1 )T (21)

where σl+1,1 denotes the largest singular value of XXX l+1
λλλl,ρl

, and
uuul+1
1 , vvvl+1

1 are its corresponding left and right singular vectors.

Algorithm 1 ADMM-based OTFS-DCSK Signal Detection
Algorithm

1: Input: H̄HH , w̄ww, µ, maximum iteration number L
2: Initialize: Randomize xxx0, zzz0, λλλ0, and set ρ0 = 0.1.
3: for l = 0, 1, . . . , L− 1 do
4: Update xxxl+1 by using LSQR to solve (19).
5: Update zzzl+1 by using truncated SVD to solve (20).
6: Update λλλl+1 based on (17c).
7: Update ρl+1 based on (17d).
8: end for
9: Output: xxxL

After determining xxxl+1 and zzzl+1, λλλl+1 is updated by (17c),
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and the ADMM-based algorithm is summarized in Algorithm
1. CCC is then generated by:

CCC = vec−1
β,N (xxxL) = [ccc0, . . . , cccn, . . . , cccN−1] ∈ Rβ×N . (22)

Since xxxL ≈ zzzL = vec(uuuL(vvvL)T ), CCC can be also ap-
proximated as a rank-1 matrix, denoted as CCC ≈ ĉccrŝss

T
c =

[ŝc,0ĉccr, . . . , ŝc,nĉccr, . . . , ŝc,N−1ĉccr] where ĉccr ∈ Rβ is the esti-
mated chaos sequence, cccn = ŝc,nĉccr, and ŝssc = [ŝc,0, . . . , ŝc,n,
. . . , ŝc,N−1]

T ∈ RN is a continuous real-valued information-
bearing vector. After the signal detection, CCC is processed
by chaos modulation and BPSK demodulation to decode the
information bits.

IV. THEORETICAL ANALYSIS

A. Convergence

The convergence results of Algorithm 1 are summarized in
the following theorem.

Theorem 1. Let {xxxl, zzzl,λλλl} be the sequence generated by
Algorithm 1. We have the following convergence properties
[46]:

(i) The generated sequences {xxxl, zzzl,λλλl} generated by Algo-
rithm 1 remain bounded throughout the iterative process,
ensuring stability and numerical robustness of the updat-
ing procedure.

(ii) The limit point {xxx∗, zzz∗,λλλ∗} obtained by the algorithm
is a stationary point satisfying the Karush-Kuhn-Tucker
(KKT) conditions for the optimization problem in (15).
This guarantees that Algorithm 1 converges toward an
optimal or locally optimal solution, reflecting its relia-
bility and effectiveness in solving the formulated signal
detection problem.

Proof: See Appendix A.

B. Bit Error Rate and Diversity over DSF Channel

In this section, we derive BER and diversity in the pres-
ence of additive white Gaussian noise (AWGN) over DSF
channel. The channel considered here exhibits DSF with each
path having the independent and identically distributed (i.i.d.)
hm ∼ CN (0, 1/M), indicating equal average power of 1/M
across all paths and

∑M
m=1 E[|hm|2] = 1. Here CN denotes

complex Gaussian random variable and E[·] is the expectation
operator.

1) BER: We follow [39] to derive the BER for the
proposed OTFS-DCSK transceiver over DSF channel. The
cosine of the angle θ between estimated chaos sequence
ĉccr and chaos reference sequence cccr is first computed as
cos θ = |ĉccTr cccr|/(∥ĉccr∥2∥cccr∥2) where | · | is the modulus of
a complex number, and the length of projection of cccr onto ĉccr

is dcccrĉccr = cos θ
√

βE[x2
k]. Subsequently, the error probability

of the decoded BPSK symbols is calculated as:

P (ŝn ̸= sn|hhh, θ) = Q

(
dcccrĉccr
σ

)
= Q

(
cos θ

√
∥hhh∥22βE[x2

k]

N0/2

)

= Q

(
cos θ

√
∥hhh∥22β/2
N0/2

)
= Q

cos θ

√
∥hhh∥22β
N0


= Q

cos θ

√
2∥hhh∥22(N − 1)Eb

NN0

 .

(23)

where ŝn is the nth element of the estimated BPSK symbol
vector ŝss, ŝss = sgn(ŝssc) ∈ RN contains the decoded BPSK
symbols, N0 = 2σ2 with σ2 being the variance of AWGN,
E[x2

k] = 1/2, Q(x) =
∫∞
x

exp(−t2/2)dt is the Q-function,
Eb = (NβE[x2

k])/(N − 1) is the energy cost per bit, and
hhh = [h1, . . . , hM ]T ∈ CM is the i.i.d. complex Gaussian
random vector containing channel fading factors for all paths
[23], [47], [48]. (23) reveals the relationship between the
symbol error rate and Eb/N0, which extends to the BER in
BPSK modulation, where the BER equals the symbol error
rate. Additionally, since the right hand side of (23) does not
depend on n, the subscript n can be omitted in the left hand
side, and the average error probability of decoding ŝss is equal
to the error rate when decoding a single ŝn.

According to Fig. 2, non-coherent chaos demodulation is
applied to demodulate information symbols. This process,
outlined in (12), leverages the rank-1 property of CCC and can
be rewritten as [39]:

s̄n = sgn
(
(ŝc,0ĉccr)

T · (ŝc,nĉccr)
)

= sgn (ŝc,0 · ŝc,n) = sgn (ŝc,0) · sgn (ŝc,n)
= ŝ0ŝn, 1 ≤ n ≤ N − 1.

(24)

Due to BPSK modulation, only the signs of ŝc,n influence the
demodulation results. The error rate for a single information
symbol s̄n is determined by the product of ŝ0 and ŝn.
Notably, even if both values have incorrect signs, the resultant
information symbol is correctly demodulated. Errors occur
only when one of ŝ0 or ŝn is incorrectly signed. Moreover,
(23) shows that the error probability of the decoded BPSK
symbols P (ŝn ̸= sn|hhh, θ) is independent of the symbol index
n. Therefore, P (ŝ0 ̸= 1|hhh, θ) = P (ŝn ̸= sn|hhh, θ) for all n
where s0 = 1, and the index n can be omitted. Subsequently,
given specific θ and hhh, the error rate for an information symbol
s̄n is calculated as:

Pe|hhh,θ =
1

N − 1

N−1∑
n=1

[
P (ŝ0 ̸= 1|hhh, θ) (1− P (ŝn ̸= sn|hhh, θ))

+ (1− P (ŝ0 ̸= 1|hhh, θ))P (ŝn ̸= sn|hhh, θ)

]
= 2P (ŝ ̸= s|hhh, θ) (1− P (ŝ ̸= s|hhh, θ))

(25)
where s0 = 1 denotes the reference symbol. Since the channel
model defined in (7) and (8) are quasi-static [44] and the corre-
sponding parameters are randomly and independently defined,
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the channel matrix HHH already incorporates temporal variation
through the Doppler shift operators. Each OTFS frame has a
distinct HHH , with its entries hm being random variables. We
then average the results over numerous independent OTFS
frames to account for the time variability, as the Doppler
effects are embedded in HHH . Therefore, the BER in the presence
of AWGN over DSF channel is determined numerically by
calculating the expected value of Pe|hhh,θ across the permissible
ranges of {hhh, θ} [40, Sec. IV-A, p. 7], [49, (10.107)], expressed
as:

BERDSF = E
[
Pe|hhh,θ|hhh, θ

]
= E

[
2Q

cos θ

√
2∥hhh∥22(N − 1)Eb

NN0


×

1−Q

cos θ

√
2∥hhh∥22(N − 1)Eb

NN0

∣∣∣∣∣hhh, θ
] (26)

where the expectation is taken over the joint distribution of
the fading coefficient vector hhh and phase interval θ. (26)
incorporates the Q-function, which accounts for symbol error
probability given the channel conditions. This framework
ensures BER evaluation under realistic channel conditions,
even though a closed-form solution is unavailable due to the
inherent complexity of integrating over the joint distributions
of hhh and θ. The numerical evaluation of these expectations
allows for an accurate BER assessment under various fading
conditions. Note that (26) is also applicable to both integer
and fractional Doppler shift cases.

Note that in the derived BER expressions of (23) and (26),
the BER is not explicitly dependent on the parameter β.
Although cos θ in (23) is computed based on the length-β
transmitted reference sequence cccr and the received reference
sequence ĉccr, the power of both sequences is normalized in
the computation of cos θ = |ĉccTr cccr|/(∥ĉccr∥2∥cccr∥2), implying
that β has minimal influence on the determination of cos θ.
Therefore, we conclude that according to (23) and (26), the
BER is not sensitive to β.

This behavior differs from conventional DCSK-based sys-
tems because our OTFS-DCSK framework incorporates rank-
1 matrix approximation technique. According to (24), the
dimension of correlation demodulation is reduced from vector-
level operations in the former DCSK to symbol-level op-
erations in the rank-1 matrix approximation-based DCSK.
This dimensionality reduction helps decrease the number of
summation terms in the BER expression, thereby eliminating
the dependence on β.

2) Diversity: The received signal in (10) can be rewritten
based on (8), (11b), (11d) as:

www = H̃HHddd+ ñnn = H̃HH (IIIN ⊗ cccr)sss+ ñnn

= (FFFN ⊗ IIIβ)HHH(FFFH
N ⊗ IIIβ) (IIIN ⊗ cccr)sss+ ñnn

=

M∑
m=1

hm(FFFN ⊗ IIIβ)TTT τm∆∆∆fm(FFFH
N ⊗ IIIβ) (IIIN ⊗ cccr)sss+ ñnn

=

M∑
m=1

hmΞΞΞmsss+ ñnn = ΦΦΦ(sss)hhh+ ñnn

(27)

where ΞΞΞm = (FFFN ⊗ IIIβ)TTT τm∆∆∆fm(FFFH
N ⊗ IIIβ) (IIIN ⊗ cccr),

and ΦΦΦ(sss) = [ΞΞΞ1sss, . . . ,ΞΞΞMsss]. Subsequently, the conditional
pairwise error probability (PEP) is [50]:

P (sss → ŝss|hhh) = P
(
∥www −ΦΦΦ(ŝss)∥22 < ∥www −ΦΦΦ(sss)∥22

∣∣∣hhh)
= Q

(
∥ (ΦΦΦ(ŝss)−ΦΦΦ(sss))hhh∥√

2N0

)
.

(28)

Using the Chernoff upper bound, the PEP is expressed as:

P (sss → ŝss) ≤ E
[
e

−∥ΦΦΦ(δδδ)hhh∥2
4N0

∣∣∣∣hhh] (29)

where ΦΦΦ(δδδ) = ΦΦΦ(ŝss)−ΦΦΦ(sss), and δδδ = ŝss−sss. Since ∥ΦΦΦ(δδδ)hhh∥2 =
hhhHΦΦΦH(δδδ)ΦΦΦ(δδδ)hhh = hhhHΥΥΥ(δδδ)hhh where ΥΥΥ(δδδ) = ΦΦΦH(δδδ)ΦΦΦ(δδδ) is a
Hermitian matrix, we obtain the upper bound

P (sss → ŝss) ≤
( ∏

ō∈J (sss,ŝss)

λō

)−1(
1

4N0

)−r(sss,ŝss)

(30)

where J (sss, ŝss) is the index set of nonzero eigenvalues λō of
ΥΥΥ(δδδ), which has cardinality |J (sss, ŝss)| = r(sss, ŝss) = rank (ΥΥΥ(δδδ))
where rank(·) denotes the rank of a matrix. Finally, the
diversity of the proposed approach is

div ≜ min
sss̸=ŝss

r(sss, ŝss) (31)

whose maximum value is M .

Employing (28) and substitutingΦΦΦ(δδδ) = ΦΦΦ(ŝss)−ΦΦΦ(sss) as well
as ΥΥΥ(δδδ) = ΦΦΦH(δδδ)ΦΦΦ(δδδ), the conditional PEP can be rewritten
as:

P (sss → ŝss|hhh) = Q

√∥ΦΦΦ(δδδ)hhh∥2
2N0


= Q

√hhhHΦΦΦH(δδδ)ΦΦΦ(δδδ)hhh

2N0

 = Q

√hhhHΥΥΥ(δδδ)hhh

2N0

 .

(32)

Subsequently, the PEP is obtained by calculating the expected
value of the conditional probability over all realizations of hhh,
expressed as:

P (sss → ŝss) = E

Q
√hhhHΥΥΥ(δδδ)hhh

2N0

∣∣∣∣hhh
 . (33)

Expressing the Hermitian matrix ΥΥΥ(δδδ) with the use of eigen-
value decomposition as UUUHΛΛΛUUU , where UUU is the eigenvector
matrix, and ΛΛΛ = diag{λ1, · · · , λō, · · · , λŌ} is the diagonal
eigenvalue matrix, the PEP is derived as [45]:

P (sss → ŝss) = E

Q
√hhhHUUUHΛΛΛUUUhhh

2N0

∣∣∣∣hhh


= E

Q
√h̃hh

H
ΛΛΛh̃hh

2N0

∣∣∣∣h̃hh


= E

Q
√2MNβ|h̃1|2

N0

∣∣∣∣h̃1

 =
1

2

(
1−

√
Nβ

Nβ +N0

)(34)
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where h̃hh = UUUhhh = [h̃1, · · · , h̃m, · · · , h̃M ], with h̃m ∼
CN (0, 1/M). Finally, the BER lower bound can be calculated
according to [45] as:

BER ≥ 1

2Nβ

α∑
a=1

P (sss → ŝss) =
α

2Nβ

1

2

(
1−

√
Nβ

Nβ +N0

)
(35)

where α is the number of ΥΥΥ(δδδ) having rank one.

C. Spectral Efficiency

In this section, we investigate the spectral efficiency of
multiple binary multi-carrier DCSK systems to highlight the
OTFS-DCSK superiority. For simplicity, we assume that one
multi-carrier symbol without CP is transmitted in unit time,
ensuring that each subcarrier occupies unit bandwidth. To
combat fading, a CP of length lCP is added to all multi-carrier
DCSK systems. The CP length should exceed the maximum
number of delayed symbols, i.e., lCP > τmax, where τmax

represents the maximum path delay in a DSF channel.
In the case of OTFS-DCSK-based systems, only one CP is

required for the transmission of N chaos sequences of length
β [24]. This means that a CP with length lCP can serve the
Nβ resource blocks in the TF domain, significantly reducing
the required length of the CP. The spectral efficiency upper
bound (SEUB) of OTFS-DCSK is calculated as:

SEUBOTFS−DCSK =
N − 1

Nβ + lCP
. (36)

where the actual spectral efficiency depends on the signal-to-
noise ratio and other system impairments, which influence the
achievable data rate. (36) represents only the theoretical upper
bound of spectral efficiency, assuming ideal transmission con-
ditions without considering the impact of noise, interference,
or imperfect channel estimation.

For the conventional OFDM-DCSK system [15], N sub-
carriers and β chaos chips are required to carry N − 1 bits.
Additionally, the CP is added β times to each OFDM symbol
to combat fading. Therefore, the SEUB of OFDM-DCSK is:

SEUBOFDM−DCSK =
N − 1

(N + lCP)β
(37)

With this baseline established, index modulation-based multi-
carrier DCSK systems [51], [52] can transmit more bits,
necessitating adjustments to the number of subcarriers in some
systems. These result in changes to the value of N − 1 in the
numerator and N in the denominator of (37).

It can be concluded from (36) and (37) that OTFS-DCSK
has higher SEUB than that of OFDM-DCSK since the re-
quirement of CP is reduced. We should emphasize that this
value is applicable for OTFS-DCSK systems where the Nβ
resource blocks in the TF domain carry only one reference
chaos sequence. Both the SVD-based OTFS-DCSK system
[38] and the proposed approach meet this requirement. An
exception is found in [37], where 2Nβ resource blocks in
the TF domain are used to carry N reference sequences.
This overuse of reference sequences results in a lower SEUB
compared to those of [38] and our solution.

TABLE I
SEUB COMPARISON AMONG MULTI-CARRIER DCSK SYSTEMS

System SEUB

OFDM-DCSK [15] N−1
(N+lCP)β

SVP-OFDM-DCSK [21] N−1
(N+lCP)β

Carrier index MC-DCSK [51] N−1+log2 N

(N+1+lCP)β

EECI-OFDM-DCSK [52] N−1+(log2 N)−1

(N+lCP)β

MRC-OTFS-DCSK [37] N
2Nβ+lCP

SVD-OTFS-DCSK [38] N−1
Nβ+lCP

Proposed N−1
Nβ+lCP

Table I compares the SEUB between the proposed and other
binary multi-carrier DCSK-based systems.

D. Complexity
The complexity of the proposed approach primarily origi-

nates from the LSQR process, due to the involvement of the
large matrix 2H̄HH

T
H̄HH + ρlIII in solving the LS problem. The

complexity of the LSQR algorithm is related to its iteration
number and the number of non-zero elements in a sparse
matrix [53]. As shown in Fig. 3, in the integer Doppler
case, the number of nonzero elements in 2H̄HH

T
H̄HH + ρlIII is

(2M − 1)Nβ. In the fractional Doppler case, applying a
threshold to set small-magnitude values to 0 results in a similar
number of nonzero elements as in the integer Doppler case
with minimal performance loss. Consequently, the complexity
of executing one LSQR algorithm is O((2M − 1)Nβ) when
the iteration number of LSQR is kept low within the ADMM
framework. Additionally, since LSQR is performed during the
ADMM iterations, hence the overall complexity of the LSQR
amounts to O(lADMM(2M − 1)Nβ), where lADMM denotes
the number of ADMM iterations. If the number of channel
paths M is small, the complexity can be further reduced to
O(lADMMNβ). Moreover, since the complexity of a single
execution of truncated SVD is O(Nβ), the overall complexity
throughout the algorithm is O(lADMMNβ). Subsequently,
the total complexity of the proposed detector is the sum
of the complexity of LSQR and truncated SVD, namely,
O(lADMM2MNβ).

For other multi-carrier DCSK systems combating DSF,
the singular vector pre-coded OFDM-DCSK (SVP-OFDM-
DCSK) [21] must perform SVD on the full-rank N×N matrix,
resulting in a complexity of O(N3). Moreover, SVP-OFDM-
DCSK requires sending the CSI to both the transmitter and
receiver, whereas our solution only necessitates CSI at the
receiver. The SVD-aided OTFS-DCSK [38] is also designed
to address DSF, with a complexity of O(Nβ) since SVD is
performed on the rank-1 N × β matrix. However, SVD-aided
OTFS-DCSK is inferior to ours, which will be discussed in
the following section. Table II compares the complexity of
multi-carrier DCSK systems combating DSF.

V. SIMULATION RESULTS

Computer simulations are conducted to assess the perfor-
mance of the proposed approach. A second-order CPF is
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TABLE II
COMPLEXITY COMPARISON AMONG MULTI-CARRIER DCSK SYSTEMS

COMBATING DSF

System Complexity

SVP-OFDM-DCSK [21] O(N3)

SVD-OTFS-DCSK [38] O(Nβ)

Proposed O(lADMM2MNβ)

employed for chaotic signal generation. The default parameters
used in the simulation are introduced as follows. The system
has N = 32 subcarriers, and the chaotic sequence length
is β = 20. The Eb/N0 range considered is [0, 20] dB. For
each Eb/N0 value, over 500000 bits are involved to compute
the BER. Unless otherwise stated, the DSF model follows
(8), (9a), and (9b). The fading factors are distributed as
hm ∼ CN (0, 1/M), where M = 4. The delay and Doppler
shift are set as τm = fm = m− 1, where m = 1, 2, 3, 4 [21].
The predefined set of parameters serves as a baseline con-
figuration, ensuring consistency across different simulations.
When analyzing the impact of a specific parameter, only that
parameter is modified while the others remain unchanged.

A. Convergence of Algorithm
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Fig. 4. NMSE versus iteration number.

Fig. 4 demonstrates the fast convergence of normalized
mean square error (NMSE) over 50 iterations for various
Eb/N0 values, ranging from 0 dB to 50 dB. We adopt the
NMSE to examine the convergence of algorithm, defined as:

NMSE = E
[
∥CCC −DDD∥2F /∥DDD∥2F

]
(38)

The NMSE measures the discrepancy between the estimated
rank-1 matrix CCC and the transmitted noise-free rank-1 matrix
DDD in the DD domain. A lower NMSE indicates higher ac-
curacy in signal reconstruction at the detector output. In Fig.
4, higher Eb/N0 values lead to significantly lower NMSE,
highlighting the beneficial impact of better signal quality on
estimation accuracy. As the iteration number increases, the
NMSE rapidly decreases across low Eb/N0 values, demon-
strating rapid convergence and effectiveness of the proposed
algorithm in accurately estimating transmitted signals.

From Fig. 4, it is observed that as Eb/N0 increases, more
iterations are required for convergence. This phenomenon is
closely related to the precision required by the algorithm. At

lower Eb/N0, the error level is relatively high, meaning that
the algorithm can reach a stable solution quickly without ex-
cessive refinement. However, as Eb/N0 increases, the overall
error decreases, which implies that the algorithm must refine
the solution to a much lower error level before convergence is
deemed to be attained. It is important to note that the algorithm
achieves a significantly low NMSE with high Eb/N0 value,
demonstrating its effectiveness in such scenarios. Additionally,
in practical implementations, the stopping criterion can be
adjusted to terminate iterations earlier when the performance
improvement becomes marginal, balancing computational ef-
ficiency and accuracy.
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Fig. 5. Squared norm of variables versus iteration number.

Fig. 5 plots the values of ∥xxxl∥ and ∥zzzl∥ versus number
of iterations. It is evident that these two norms converge
to an identical value within a few iterations, demonstrating
the fast convergence of the proposed ADMM-based OTFS-
DCSK detector. Furthermore, it illustrates the bounded nature
of xxxl and zzzl. The results are consistent across a wide range
of Eb/N0 ∈ [0, 50] dB, showcasing the adaptability of our
algorithm in combating noise.
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Fig. 6. Difference of variables versus iteration number.

Fig. 6 illustrates the convergence of xxxl and zzzl versus
iteration number of Algorithm 1 without stopping criterion.
We observe that as l → ∞, both ∥xxxl+1 − xxxl∥22 → 0
and ∥zzzl+1 − zzzl∥22 → 0, indicating that the variables will
ultimately converge. This trend holds across a wide Eb/N0

range, from 0 dB to 50 dB. In scenarios with higher Eb/N0,
the differences between variables are smaller. From 0 to 20
iterations, the difference of variables exhibits a rapid initial
decline, followed by noticeable fluctuations, especially at low
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Eb/N0 values. This behavior corresponds to the transient
state in the iterative process, where the algorithm quickly
reduces the large initial errors and adapts to the optimization
constraints. The fluctuations occur because estimates still have
relatively large adjustments, and noise in the system can
have a more significant impact at this stage. Between 20
and 150 iterations, the changes of the estimates are relatively
small. This phase corresponds to the steady state, where the
updates become smaller as the algorithm moves toward an
optimal solution. The convergence rate in this region follows
a typical diminishing-step behavior observed in iterative opti-
mization methods, where the magnitude of updates decreases
progressively. It is important to note that due to the limits of
computational precision, the difference value cannot be lower
than 10−32 after over 150 iterations. Additionally, the trends
of xxxl and zzzl align rapidly within a few iterations.

B. Running Time of Algorithm
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Fig. 7. Running time versus maximum iteration number of ADMM-based
algorithm.

The running time versus maximum iteration number of the
ADMM algorithm is shown in Fig. 7. In this simulation,
Eb/N0 is set to 10 dB, the number of subcarriers is N = 32,
the chaos sequence length is β = 32, the number of channel
paths is 4, and 1000 independent trials are conducted. Note
that the algorithm will terminate before reaching the maximum
iteration number if the stopping criterion is met. Initially,
the running time grows approximately linearly, reflecting the
computational cost during the iterations. However, beyond ap-
proximately 50 iterations, the running time begins to stabilize,
indicating that the algorithm stopping criterion is met. That
is, only around 50 iterations are needed and this suggests
that the proposed scheme maintains reasonable computational
complexity.

C. Signal-to-Noise Ratio (SNR) versus Velocity

Fig. 8 plots the SNR versus velocity. The parameters used
are identical to those in the above test. Here, we consider a
long-term evolution (LTE) system using Band 3, with a central
frequency of 1.8 GHz and a subcarrier spacing of 15 kHz.
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Fig. 8. SNR versus velocity.

In Fig. 8, we observe that SNR decreases slightly as velocity
increases. Additionally, compared to the high Eb/N0 value
of 10 dB, the SNR is around -3 dB, significantly lower
than Eb/N0. This is due to the adverse effects of channel
impairment and the spreading process of chaos modulation.
Furthermore, thanks to the spreading, SNR is only weakly
affected by velocity, as indicated by the minimal decline in
SNR with increasing velocity.

D. NMSE Comparison across Multi-Carrier DCSK Systems

In this study, the NMSE is calculated based on 1000 inde-
pendent runs across various Eb/N0 values. For comparison,
we select two multi-carrier DCSK systems: SVP-OFDM-
DCSK [21] and SVD-aided OTFS-DCSK [38], which are
newly designed to combat DSF.
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Fig. 9. NMSE versus Eb/N0 at M = 1, 4, 8.

Fig. 9 plots the NMSE results for various numbers of
channel paths, with the delay and Doppler shift set as τm =
fm = m − 1, where 1 ≤ m ≤ M . When M = 1,
τ1 = f1 = 0, it becomes a flat fading channel. We observe
that increasing the number of channel paths results in a
lower NMSE for the proposed approach. This improvement is
attributed to the effective utilization of sparsity and the rank-1
property of the system. Our system demonstrates lower NMSE
compared to the other two systems under comparison. [38]
struggles with M > 1 because the received symbols affected
by the channel response are not rank-1, and directly using
SVD for demodulation does not yield good performance over
DSF channels. Additionally, since [21] does not include noise
reduction methods and its performance gain primarily comes
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from the diversity gain obtained by decomposing the channel
response matrix, it does not work well over flat fading chan-
nel. By contrast, the proposed approach maintains consistent
performance over both flat and DSF channels, indicating its
superior adaptability in combating various types of fading.
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Fig. 10. NMSE over various fading channels.

Fig. 10 plots the NMSE over time-selective fading (TSF),
frequency-selective fading (FSF), and DSF channels with
integer and fractional Doppler shifts. For the TSF channel,
we set M = 1, τ1 = 0, and f1 = 1 while M = 4,
τm = m−1, and fm = 0 are assigned in the FSF channel. For
fractional Doppler shift, we employ τm ∼ U{1, 2, . . . , β − 1}
and fm ∼ U(0, 0.5) for 1 < m ≤ M [45], and τ1 = f1 = 0.
We see that the proposed approach achieves lower NMSE
compared to [21] and [38], highlighting the former’s superior
detection accuracy. Additionally, the former attains the lowest
NMSE over the DSF channel due to its highest diversity
gain. In contrast, [38] performs poorly under TSF and DSF
due to the loss of rank-1 property caused by Doppler shifts.
Furthermore, we study the integral and fractional DSF cases in
Fig. 10. It is observed that the NMSE values in both DSF cases
are similar at low Eb/N0 values, demonstrating the effective-
ness of the proposed detection algorithm in handling both
scenarios. This indicates that the algorithm can mitigate the
challenges introduced by fractional Doppler shifts, ensuring
stable performance even in the presence of fractional Doppler
shifts.
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Fig. 11. NMSE versus Eb/N0 at N = 8, 16, 32, 64.

Fig. 11 plots the NMSE results for different values of sub-
carrier number N . We observe that our solution achieves sig-
nificantly lower NMSE compared to other systems. Moreover,

as the number of subcarriers increases, the proposed approach
continues to yield lower NMSE, whereas other systems do
not fully leverage the increased N to enhance performance.
This is because increasing the number of subcarriers enhances
signal resolution in the DD domain, enabling OTFS to better
mitigate multipath and Doppler effects in DSF channels,
thereby increasing detection accuracy.

0 5 10 15 20

E
b
/N

0
 (dB)

10
-2

10
-1

10
0

10
1

N
M

S
E
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Fig. 12 plots the NMSE for different chaos sequence lengths
β. We see that the proposed approach consistently achieves
lower NMSE compared to other systems, regardless of the
value of β. In our solution, a longer chaos sequence results in
a higher NMSE, indicating a trade-off between signal detection
accuracy and chaotic key space. Moreover, the NMSE value
does not change significantly with β, in contrast to the trends
observed with the number of subcarriers N in Fig. 11.

E. BER Performance Comparison across Multi-Carrier DCSK
Systems

The BER performance of the proposed approach is evalu-
ated by comparing with [21] and [38]. For each Eb/N0 value,
over 500000 bits are simulated, thus the results are reliable
for BER values above 10−5.
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Fig. 13. BER versus Eb/N0 at M = 1, 4, 8.

Fig. 13 plots the BER results versus Eb/N0 in different
channels. For M = 1, the channel exhibits flat fading. It
is observed that the simulated BERs of our scheme closely
match the analytical BERs derived in Section IV-B, corrob-
orating our theoretical calculations. Moreover, as the number
of channel paths increases, the proposed approach achieves a
lower BER due to the increased channel diversity gain. Our
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system outperforms [21] over fading channels regardless of the
number of paths and [38] over DSF channels. In a flat fading
channel, [38] is slightly superior to the proposed approach
at high Eb/N0 values. However, [38] struggles with symbol
demodulation over DSF channels, resulting in its restricted
applicability. Moreover, the diversity value is indicated by
the slope of the BER curve. It is seen that these slopes
for different numbers of paths are approximately equal to
M , demonstrating that the proposed approach attains a high
diversity gain.
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Fig. 14 plots the BER over TSF, FSF, and DSF channels,
where the DSF channel includes cases with integer and
fractional Doppler shifts. We see that the proposed approach
attains lower BER compared to [21] and [38], demonstrating
the former superior reliability. Additionally, the simulated
BER closely agrees with the analytical BER. The proposed
approach exhibits low BER over FSF and DSF channels, as
the diversity gain from multipath is fully exploited for BPSK
demodulation. In contrast, [38] performs poorly over TSF and
DSF channels due to the loss of the rank-1 property of the
received symbol matrix. Furthermore, the results of integral
and fractional DSF cases are plotted in Fig. 14. It is observed
that the BER values for both DSF cases are similar, indicating
that the proposed approach effectively mitigates the impact
of fractional Doppler shifts. This suggests that the system is
robust to fractional Doppler effects, ensuring reliable detection
in practical scenarios where Doppler shifts are real-valued.
Even in the fractional Doppler case, the derived theoretical
BER matches the simulated BER well. The close agreement
between theoretical and simulated BER curves further con-
firms the accuracy of the analytical derivation.

Fig. 15 illustrates the BER at different values of subcarrier
number N . We observe that the proposed approach achieves
significantly lower BER as N increases. This is because a
larger N allows for a better resolution in the DD domain,
which enhances the ability to combat multipath effects and
Doppler spread. However, as N increases, the computational
complexity of the system also grows, requiring a trade-off
between performance and complexity. Even though when
N = 8, the proposed approach does not outperform the
competitors in all cases, it shows better BER performance as
N increases to 16, 32, and 64, demonstrating its effectiveness
in mitigating DSF. Moreover, [21] does not perform better with
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Fig. 15. BER versus Eb/N0 at N = 8, 16, 32, 64.

a larger N , and [38] fails to demodulate the symbols over DSF
channel.
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Fig. 16. BER versus Eb/N0 at β = 10, 20, 30, 40.

Fig. 16 plots the BER versus chaos sequence length β. The
proposed approach shows insensitivity to β, with BER values
remaining similar over a wide range of β = 10, 20, 30, 40.
This robustness can be attributed to the inherent properties of
the OTFS modulation scheme, which effectively mitigates the
effects of DSF channels. The insensitivity to β implies that
the OTFS-DCSK system can achieve reliable communication
without the need to frequently adjust the spreading factor,
simplifying system design and implementation. In contrast,
[21] exhibits a low BER at β = 10, but its value increases
rapidly as β grows. Additionally, the system in [38] does not
perform well over DSF channel, as the received matrix is no
longer rank-1.

VI. CONCLUSION

This paper proposes an ADMM-based detection algorithm
for OTFS-DCSK systems to enhance reliability in high-
mobility scenarios, effectively combating DSF and noise. By
exploiting channel sparsity and the rank-1 structure of trans-
mitted symbols, the proposed method integrates LSQR and
truncated SVD for efficient detection. The chaotic spreading
property of DCSK further enhances resistance to interception
and jamming. Convergence speed, BER performance, spectral
efficiency, diversity gain, and complexity are analyzed. Sim-
ulation results verify rapid convergence, robust performance
under fractional Doppler shifts, and superior reliability com-
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pared to existing multi-carrier DCSK schemes, confirming its
practicality for high-mobility communications.

APPENDIX A
PROOF OF THEOREM 1

The proof is motivated by [46] which focuses on tensor
completion, while this paper concentrates on matrix approxi-
mation. The updates of {xxxl+1, zzzl+1,λλλl+1, ρl+1} during the lth
iteration are represented by the updates in (16). The augmented
Lagrangian function after the lth iteration is:

Lρl
(xxxl, zzzl,λλλl)

= ∥w̄ww − H̄HHxxxl∥22 + λλλlT (xxxl − zzzl) +
ρl
2
∥xxxl − zzzl∥22

= ∥w̄ww − H̄HHxxxl∥22 +
ρl
2

∥∥∥∥xxxl − zzzl +
λλλl

ρl

∥∥∥∥2
2

− ρl
2

∥∥∥∥λλλl

ρl

∥∥∥∥2
2

.

(39)

Subsequently, after updating {xxxl+1, zzzl+1,λλλl+1, ρl+1}, the aug-
mented Lagrangian becomes:

Lρl
(xxxl+1, zzzl,λλλl)

= ∥w̄ww − H̄HHxxxl+1∥22 + λλλlT (xxxl+1 − zzzl) +
ρl
2
∥xxxl+1 − zzzl∥22

= ∥w̄ww − H̄HHxxxl+1∥22 +
ρl
2

∥∥∥∥xxxl+1 − zzzl +
λλλl

ρl

∥∥∥∥2
2

− ρl
2

∥∥∥∥λλλl

ρl

∥∥∥∥2
2

(40a)
Lρl

(xxxl+1, zzzl+1,λλλl)

= ∥w̄ww − H̄HHxxxl+1∥22 + λλλlT (xxxl+1 − zzzl+1) +
ρl
2
∥xxxl+1 − zzzl+1∥22

= ∥w̄ww − H̄HHxxxl+1∥22 +
ρl
2

∥∥∥∥xxxl+1 − zzzl+1 +
λλλl

ρl

∥∥∥∥2
2

− ρl
2

∥∥∥∥λλλl

ρl

∥∥∥∥2
2

(40b)
Lρl

(xxxl+1, zzzl+1,λλλl+1)

= ∥w̄ww−H̄HHxxxl+1∥22 + λλλl+1T (xxxl+1−zzzl+1) +
ρl
2
∥xxxl+1−zzzl+1∥22

= ∥w̄ww−H̄HHxxxl+1∥22 +
ρl
2

∥∥∥∥xxxl+1−zzzl+1+
λλλl+1

ρl

∥∥∥∥2
2

− ρl
2

∥∥∥∥λλλl+1

ρl

∥∥∥∥2
2

(40c)
Lρl+1

(xxxl+1, zzzl+1,λλλl+1)

= ∥w̄ww−H̄HHxxxl+1∥22+λλλl+1T (xxxl+1−zzzl+1)+
ρl+1

2
∥xxxl+1−zzzl+1∥22

= ∥w̄ww−H̄HHxxxl+1∥22+
ρl+1

2

∥∥∥∥xxxl+1 − zzzl+1 +
λλλl+1

ρl+1

∥∥∥∥2
2

− ρl+1

2

∥∥∥∥λλλl+1

ρl+1

∥∥∥∥2
2

.

(40d)

Solving (17a) and (17b) leads to:

Lρl
(xxxl+1, zzzl+1,λλλl)≤Lρl

(xxxl+1, zzzl,λλλl)≤Lρl
(xxxl, zzzl,λλλl) (41)

Based on (17c) and (40b), (41) is converted into:

∥w̄ww − H̄HHxxxl+1∥22 +
ρl
2

∥∥∥∥λλλl+1

ρl

∥∥∥∥2
2

− ρl
2

∥∥∥∥λλλl

ρl

∥∥∥∥2
2

≤ Lρl
(xxxl, zzzl,λλλl)

(42)
and

∥w̄ww − H̄HHxxxl+1∥22 +
ρl
2

∥∥∥∥λλλl+1

ρl

∥∥∥∥2
2

≤Lρl
(xxxl, zzzl,λλλl) +

ρl
2

∥∥∥∥λλλl

ρl

∥∥∥∥2
2

.

(43)

From (43), we conclude that when the initial value of λλλ0 is
bounded, then ∥λλλ∥2 is bounded.

Subsequently, transforming (40c) and (40d) yields:

Lρl
(xxxl+1, zzzl+1,λλλl+1)

= ∥w̄ww − H̄HHxxxl+1∥22 + (λλλl+1 − λλλl + λλλl)T (xxxl+1 − zzzl+1)

+
ρl
2
∥xxxl+1 − zzzl+1∥22

= Lρl
(xxxl+1, zzzl+1,λλλl) + (λλλl+1 − λλλl)T (xxxl+1 − zzzl+1)

= Lρl
(xxxl+1, zzzl+1,λλλl) + ρl∥xxxl+1 − zzzl+1∥22

(44a)

Lρl+1
(xxxl+1, zzzl+1,λλλl+1)

= ∥w̄ww − H̄HHxxxl+1∥22 + λλλl+1T (xxxl+1 − zzzl+1)

+
ρl+1 − ρl + ρl

2
∥xxxl+1 − zzzl+1∥22

= Lρl
(xxxl+1, zzzl+1,λλλl+1)+

ρl+1 − ρl
2

∥xxxl+1 − zzzl+1∥22.

(44b)

Combining (41), (44a), and (44b), we obtain:

Lρl+1
(xxxl+1, zzzl+1,λλλl+1)

≤ Lρl
(xxxl, zzzl,λλλl) +

ρl+1 + ρl
2

∥xxxl+1 − zzzl+1∥22

= Lρl
(xxxl, zzzl,λλλl) +

(1 + µ)

2ρl
∥λλλl+1 − λλλl∥22.

(45)

Summing (45) over l = 0, 1, . . . yields:

Lρl
(xxxl, zzzl,λλλl)≤Lρ0

(xxx0, zzz0,λλλ0) +

l−1∑
ι=0

(1 + µ)

2ρι
∥λλλι+1 − λλλι∥22.

(46)
Since ∥λλλ∥2 is bounded, and ρl increases exponentially,
Lρl

(xxxl, zzzl,λλλl) is upper bounded. Since the loss function is
bounded and {xxxl, zzzl} are variables inside it, {xxxl, zzzl} are
bounded [46]. Therefore, {xxxl, zzzl,λλλl} are bounded.

Since {xxxl, zzzl,λλλl} are bounded sequences, the Bolzano-
Weierstrass theorem [54] ensures the existence of at least
one accumulation point {xxx∗, zzz∗,λλλ∗}, and we can assume that
sequences {xxxl, zzzl,λλλl} finally converge to this accumulation
point. Subsequently, we derive the KKT conditions for (16),
where the gradient of Lρ∗(xxx

∗, zzz∗,λλλ∗) at xxx∗ and the gradient
of Lρ∗(xxx

∗, zzz∗,λλλ∗) at λλλ∗ are equal to 0, given by:

∇xxx∗Lρ∗(xxx
∗, zzz∗,λλλ∗)

= 2H̄HH
T
H̄HHxxx∗ − 2H̄HH

T
w̄ww + ρ∗

(
xxx∗ − zzz∗ +

λλλ∗

ρ∗

)
= 0

(47a)

∇λλλ∗Lρ∗(xxx
∗, zzz∗,λλλ∗) = xxx∗ − zzz∗ = 0. (47b)

To prove the KKT condition, when l → 0, the difference
between xxxl+1 and zzzl is:

lim
l→∞

∥xxxl+1 − zzzl∥2

= lim
l→∞

∥∥∥∥(2H̄HHT
H̄HH + ρlIII

)−1 (
2H̄HH

T
w̄ww + ρlzzz

l − λλλl
)
− zzzl

∥∥∥∥
2

= lim
l→∞

∥∥∥(2H̄HHT
w̄ww + ρlzzz

l − λλλl
)
/ρl − zzzl

∥∥∥
2
= 0

(48)
where the second and the third equations hold as ρl → ∞
when l → ∞. Therefore, when l → ∞, lim

l→∞
∥xxxl+1−zzzl∥2 = 0

and we obtain xxx∗ = zzz∗. Substituting this result into (18), we
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have:
2H̄HH

T
H̄HHxxx∗ − 2H̄HH

T
w̄ww + λλλ∗ = 0. (49)

When xxx∗ = zzz∗ and (49) hold, we deduce that the limit
point {xxx∗, zzz∗,λλλ∗} is a stationary point that satisfies the KKT
conditions given in (47a) and (47b).
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