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Abstract—Existing machine learning (ML)-based inverse de-
sign methods for electromagnetic (EM) structures encounter
two major challenges: impractical input requirements and non-
uniqueness effects. This paper introduces an end-to-end EM
design framework based on a modified conditional variational
autoencoder (MCVAE), which directly maps practical design
constraints to optimized structure configurations. The proposed
framework incorporates a modified decoder that interprets
practical constraints, such as desired operating frequency, band-
width, maximum allowable value for reflection coefficients, and
transmission phase, into detailed EM responses over the target
frequency band. A modified encoder mitigates the effects of
non-uniqueness common in inverse EM design, where multiple
structures yield similar responses, by integrating Gaussian noise
for robust latent space exploration and employing a forward-
model-based loss function to enforce structural accuracy, thereby
enhancing output reliability and model performance. To validate
the effectiveness of the proposed method, multiple practical
implementations are presented: a linear-to-circular polarization
converter design, a Fourier-phased metasurface design, a slot-
line filter design, a loop polarization converter design, and a
polarization converter design with double and triple-expanded
parameter ranges. Compared to traditional optimization-based
methods, the proposed method significantly improves design
efficiency while maintaining high accuracy. This method offers
a generalized framework for end-to-end EM design, bridging
practical constraints to optimized structure realizations.

Index Terms—Electromagnetic design, end-to-end, inverse de-
sign, machine learning, non-uniqueness, practical constraints.

I. INTRODUCTION

ELECTROMAGNETIC (EM) design aims to obtain an
EM structure that generates the desired EM response.

Conventional design methods often depend on trial-and-error
approaches due to the lack of a quantitative mapping between
structures and their corresponding responses.

Trial-and-error methods often require numerous iterations
to achieve a structure that meets the desired response. Each
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Fig. 1. Typical ML-based inverse design methods encounter two key
challenges: impractical input requirements and non-uniqueness effects.

iteration relies on full-wave simulation and the designers’
reasoning ability to evaluate and update the current structure.
The structure is iteratively modified to approach the desired
performance. Optimization algorithm-based methods replace
this manual reasoning with optimization algorithms, such as
genetic algorithms (GA) [1]–[3] and particle swarm opti-
mization (PSO) [4]–[7]. The machine learning (ML) forward-
model-based methods further replace full-wave simulation
with forward surrogate models to evaluate structures’ re-
sponses [8]–[10], [12]–[14], [16]–[18], [20]–[24]. Trained on
historical data, these surrogate models learn the relationships
between structures and their responses. In addition, the ML
generative model-based method utilizes generative models
to intelligently initialize and refine structures [25]–[28]. By
learning the characteristics of existing structures, generative
models can mimic human designers by initializing designs
intelligently rather than randomly. Generative models refine
structures by adjusting compressed feature vectors in a latent
space.

In contrast with trial-and-error methods, end-to-end methods
directly yield an optimal structure that produces the desired
EM responses. Many works utilize ML-based inverse models
to realize end-to-end EM design [34]–[38]. The ML-based
methods are often criticized for high computational cost in
developing an accurate surrogate model, since the trial-and-
error methods complete each design task at a lower com-
putational cost. However, end-to-end methods can reuse the
trained model for similar design tasks, gradually reducing the
average computational cost for each design task as the number
of design tasks increases. By contrast, the computational cost
of the trial-and-error methods continuously grows.

Existing end-to-end design approaches suffer from impracti-
cal input requirements and non-uniqueness effects, as depicted
in Fig. 1. Typical design specifications are broad, for example,
|S11| < −10 dB from 1GHz to 2GHz. They use single



2

values to approximately summarize the characteristics over
the whole band, such as the desired minimum operating fre-
quency (1GHz), maximum operating frequency (2GHz), and
maximum allowable value for reflection coefficients (−10 dB).
Other information like the desired center frequency fc and
bandwidth BW may be included as needed. However, existing
methods require a plot of the desired |S11| at a large number
of frequency points sampled within the frequency band of
interest, which is difficult to obtain from real-world design
constraints. This limits the usefulness and application of
existing approaches.

Non-uniqueness causes traditional inverse models to strug-
gle when multiple structures produce similar responses. This
is because the loss function, which measures the difference
between predicted and actual structures, can become discon-
tinuous and non-differentiable. Suppose there are two very
different structures, A and B, with almost identical responses.
A tiny change in the desired response might cause the model
to suddenly jump from predicting something close to structure
A to something close to structure B, making the loss function
unstable. This instability severely harms the model’s conver-
gence and accuracy.

Several studies have attempted to address either the im-
practical input requirements or non-uniqueness effects, but not
both simultaneously. Z. Gu et al. used a generative adversarial
network (GAN) to convert practical frequency requirements
into a |S11| curve [39]. Enriching the |S11| information helped
weaken the effects of non-uniqueness but could not guaran-
tee optimized designs. Even with enriched features, multiple
structures might still generate similar |S11| curves, causing the
model to struggle. C. C. Nadell et al. proposed a fast-forward
dictionary search to mitigate the effects of non-uniqueness in
an all-dielectric metasurface design application [40]. Using
a forward model, they generated a dictionary of all possible
structure-response pairs comprising 8.157 × 108 data points.
For a given desired response, designers searched the dictionary
to find a list of responses closely matching the desired re-
sponse and selected an optimal design from the corresponding
structures. While effective, this approach required significant
computational resources, such as a powerful GPU, to generate
and operate the dictionary.

C. Zhang et al. proposed a multivalued neural network to
associate each EM response input with N structures as output
[41]. N should equal the maximum number of possible output
structures to cover all the possibilities. Afterward, they used
a pre-trained forward model to filter out M (M ≤ N ) valid
ones from the N output structures. The multi-circuit process
was then utilized to select a sub-optimal solution from the
M valid structures. However, it is difficult to determine the
best value for N . An unnecessarily large N value wastes
computational resources, and a small N value could exclude
the desired output structure from the N outputs. L. Yuan et
al. mitigated the effects of non-uniqueness by establishing
an improved transfer function-based artificial neural network
model [42]. They utilized a pole-and-residue-based transfer
function to convert the desired |S11| curves into poles and
residues as input. The generated multiple structures were
fed into pole-based and residue-based forward branches to

filter out a sub-optimal output. However, it still requires
detailed curves as input, which is impractical in real-world
engineering scenarios. The above-mentioned reference works
could not realize end-to-end design from practical constraints
to optimized structures.

This paper proposes an end-to-end EM design framework
that solves the impractical input issue and mitigates the effects
of non-uniqueness simultaneously. A modified conditional
variational autoencoder (MCVAE) is developed to map practi-
cal constraints to optimized structure designs directly. The ob-
jectives and operational principles of the proposed model dis-
tinctly differ from those of traditional VAEs and CVAEs. They
are utilized for data augmentation by creating new data that
resembles real data across various domains, including medical
data [43], spectral information [44], industrial processes [45],
spectroscopy measurements [46], remote sensing [47], and
battery life [48], particularly where original data are scarce
or difficult to obtain. Even though some research has claimed
the application of CVAEs for the inverse design of airfoils [49]
or molecules [50], their methodology closely resembles data
augmentation. They accomplished inverse design by utilizing
the decoder to produce new molecules or airfoils similar
to existing ones. The conventional VAEs or CVAEs may
fail to converge or produce less accurate outputs due to the
non-uniqueness effects. Unlike these previous CVAEs-related
studies, which focus on various forms of data augmentation,
the proposed model seeks to connect practical constraints
with optimized structures for end-to-end EM design. The
constraints are enriched and converted into detailed responses
over the desired band using a modified conditional decoder.
The detailed responses are then fed into the modified encoder
to determine the geometric variables of the structure. A pre-
trained forward model evaluates the generated EM responses
of the output structure and further mitigates the effects of non-
uniqueness. Compared to existing end-to-end methods that
suffer from impractical input requirements or non-uniqueness
effects, the proposed end-to-end framework directly generates
optimized structure designs based on practical constraints. The
effectiveness of the proposed method is validated in multiple
implementations: a linear-to-circular polarization converter
design, a Fourier-phased metasurface design, a slotline filter
design, a loop polarization converter design, and a polarization
converter design with double and triple-expanded parameter
ranges.

The remaining content is organized as follows. Section II
introduces the working principle of the proposed design frame-
work. Section III describes the first three implementations to
validate the proposed method and compares it with existing
end-to-end methods. Section IV discusses the capability of
handling multiple design objectives and the effects of wide
parameter ranges through another three implementations. Sec-
tion V gives the conclusion.

II. PROPOSED DESIGN FRAMEWORK

Existing ML-based end-to-end design methods suffer from
either impractical input requirements or non-uniqueness ef-
fects. We propose a modified conditional variational autoen-
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Fig. 2. The proposed end-to-end design framework addresses the limitations of typical methods by accommodating practical input and generating optimized
structures. (a) Training stage. (b) Design stage.

coder (MCVAE) to achieve the end-to-end design from practi-
cal EM response requirements to optimized structure designs,
as shown in Fig. 2. It resolves the impractical input issue and
mitigates the effects of non-uniqueness simultaneously.

A. Practical Constraints

Existing end-to-end methods require impractical input, such
as detailed EM responses across the entire frequency range
of interest. These are difficult or impractical to derive di-
rectly from real-world constraints. Practical constraints usually
consist of only single values that approximately summarize
the overall characteristics within the desired frequency band.
These include the minimum frequency, maximum frequency,
maximum allowable value for reflection coefficients, average
transmission phase (for filters or transmissive metasurfaces),
maximum or average Gain (for antennas), overall size, and
other relevant information. It is impractical to obtain, for
example, the entire reflection coefficient curve based on its
maximum allowable value. These summary values from the
practical constraints are the practical input for the end-to-end
design.

B. Dataset Preparation

As with all ML-based design methods, sufficient data are
required to train the model. The additional time and com-
putational costs associated with dataset preparation are the
main drawbacks often cited for ML-based methods. The trial-
and-error methods (including the improved versions supported
with optimization algorithms) involve fewer data computations

during the iterative design process for a given design task.
However, the trial-and-error methods need a similar amount
of data computations for every design task, which means its
time and computational costs continuously grow as the number
of design tasks increases. Although the ML-based design
methods spend extra time and computational costs in dataset
preparation, they do not require repeated data generation in
future design tasks. By comparison, the ML-based design
methods significantly reduce the time and computational costs
on average, especially when dealing with multiple similar
design tasks.

The proposed model requires training, validation, and test
datasets in a ratio of 7 : 2 : 1. Each data entry contains
a combination of geometric variables Pi, corresponding EM
responses Rj,i (j ∈ [1, NR]), and associated feature vectors
Qi. Pi is composed of all the tunable geometric variables. NR

denotes the number of EM response types of interest. Different
EM responses can be in different sizes. i ∈ [1, Ndata],
Ndata equals the data amount. Ndata depends on the di-
mensionality of geometric variables and the requirement for
accuracy. A larger dataset generally improves the accuracy
of an ML model up to a point. The rate of improvement
typically follows a logarithmic curve, eventually plateauing
when the data have sufficiently covered the search space.
For simplicity and a fair comparison with existing methods,
Ndata pairs of data are predetermined independently instead
of determined through sequential sampling. Latin Hypercube
Sampling is employed to acquire the Ndata data to cap-
ture the design space sufficiently. As the complexity and
dimensionality increase, it may be difficult to acquire suffi-
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cient data. Advanced sampling strategies, data augmentation
techniques, and small-sample machine learning methods can
be applied to improve the model convergence and accuracy.
Qi = [fmin, fmax, r1,i, ..., rj,i] describes a set of practical
constraints that best matches Rj,i (j ∈ [1, NR]). fmin and
fmax define the desired frequency range. rj,i (j ∈ [1, NR])
denotes the practical requirement for Rj,i. The collected data
are converted or normalized into a range between 0 and 1.
The conversion or normalization manner depends on the data
type, which will be introduced in specific implementations.

C. Training Stage

The architecture and working principle of the proposed MC-
VAE in its training stage are shown in Fig. 2(a). The typical
VAE or CVAE encoder is only responsible for converting the
input information into a latent space. The latent space for
CVAEs is modeled as a Gaussian distribution, which simplifies
sampling, optimization, and analysis. Also, because of the
Central Limit Theorem, Gaussian noise naturally approximates
complex real-world distributions. Additionally, Gaussian noise
is smooth and continuous, enabling controlled perturbations
that assess the latent space’s smoothness and the model’s
generalization ability. Its mathematical properties, such as
well-defined mean and variance, further enhance its utility for
efficient optimization and evaluation. Together, these charac-
teristics make Gaussian noise an ideal choice for analyzing
and refining the latent space in CVAEs.

Our modified encoder (E(·) = [E1(·), E2](·)) not only con-
verts (E2(·)) each input simulated responses Rj,i (j ∈ [1, NR])
into a distinct Gaussian noise vector (Ni) in a latent space, but
also predicts (E1(·)) the geometric variables P′

i that generate
the input responses,

[P′
i, Ni] = E(Rj,i),

= [E1(Rj,i), E2(Rj,i)] (1)

The Gaussian noise is applied independently to each sample,
ensuring that the latent space is stochastic and that each
sample has a distinct latent representation. During training,
the encoder outputs µ and log(σ2) for each input sample.
µ and σ2 define the approximate distribution N(µ, σ2). The
approximate distribution N(µ, σ2) is regularized to be close
to a standard Gaussian distribution N(0,1) by minimizing
the Kullback-Leibler (KL) divergence (referred to as Loss2
included in the loss function). By doing so, each input sample
is represented into a distinct latent variable z computed
using the reparameterization trick: z = µ + σ × ϵ, where
ϵ is a random noise vector drawn from a standard normal
distribution. A distinct Gaussian noise vector z is combined
with each feature vector Qi and fed into the modified decoder
(D(·)) to reconstruct the responses R′′

j,i (j ∈ [1, NR]),

R′′
j,i = D(Ni,Qi),

= D(E2(Rj,i),Qi). (2)

The predicted geometric variables P′
i is fed into the pre-trained

forward model (F) to evaluate the EM responses R′
j,i (j ∈

[1, NR]) generated by the predicted geometric variables P′
i.

The forward model is pre-trained using the same datasets. A

more accurate forward model improves the end-to-end model’s
performance, enhancing design precision.

The loss function (Loss) is defined as a weighted sum
of three sub-losses: the generation loss (Loss1), the KL-
divergence of the latent space (Loss2), and the reconstruction
loss (Loss3),

Loss =
1− β

2
× (Loss1 + Loss3) + β × Loss2, (3)

where β is a weight that gradually increases from 0.1 to 0.8
over epoch,

β = 0.1 +
0.7

(Epochmax − 1)
× (Epochcurrent − 1). (4)

Here, Epochmax equals the maximum number of epochs,
and Epochcurrent denotes the index of the current epoch. β
forces the model to focus on the generation ability (Loss1)
and reconstruction ability (Loss3) at the beginning, and then
gradually enforce the latent space structure (Loss2).
Loss1 equals the mean squared error (MSE) between the

generated responses R′
j,i (j ∈ [1, NR]) and simulated re-

sponses Rj,i (j ∈ [1, NR]) to evaluate the predicted geometric
variables,

Loss1 =
1

Ntrain

∑
i∈Ntrain

NR∑
j

|R′
j,i − Rj,i|2,

=
1

Ntrain

∑
i∈Ntrain

NR∑
j

|F (P′
i)− Rj,i|2,

=
1

Ntrain

∑
i∈Ntrain

NR∑
j

|F (E1(Rj,i))− Rj,i|2. (5)

Loss2 is the Kullback-Leibler (KL) divergence of the normal
distribution to assess the conversion into the latent space,

Loss2 =
1

Ntrain

∑
i∈Ntrain

KL (Ni(µ, σ2) || N(0, 1)),

=
1

Ntrain

∑
i∈Ntrain

KL (E2(Rj,i) || N(0, 1)). (6)

Loss3 equals the MSE between the reconstructed responses
R′′

j,i (j ∈ [1, NR]) and simulated responses Rj,i (j ∈ [1, NR])
to evaluate the reconstruction ability of the decoder (D),

Loss3 =
1

Ntrain

∑
i∈Ntrain

NR∑
j

|R′′
j,i − Rj,i|2,

=
1

Ntrain

∑
i∈Ntrain

NR∑
j

|D(Ni,Qi)− Rj,i|2,

=
1

Ntrain

∑
i∈Ntrain

NR∑
j

|D(E2(Rj,i),Qi)− Rj,i|2.

(7)

The sum of Loss1, Loss2, and Loss3 is differentiated and
back-propagated to optimize the weights and biases of the
modified encoder and decoder.

In specific implementations, the architecture and hyperpa-
rameters of the MCVAE (including the encoder, decoder, and
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forward model) are optimized using Bayesian optimization.
The MCVAE is trained by minimizing a defined loss function
to achieve optimal accuracy, as its accuracy directly influences
the quality of the resulting designs. Tunable hyperparameters
include the number of hidden layers, number of neurons,
number of epochs, dimensionality of the latent space (dimen-
sionality of Gaussian noise vector), learning rate, and batch
size.

Here is the step-by-step guideline for the training stage of
the proposed method:

1) For the EM structure under design, select the tunable ge-
ometric parameters and determine their sampling ranges
based on the desired design freedom and acceptable
solving complexity (a wide sampling range provides high
design freedom but increases the solving complexity,
while a narrow sampling range is easy to solve but limits
the design freedom);

2) Define Ndata combinations of geometric parameters Pi

(i ∈ [1, Ndata]) through Latin Hypercube Sampling,
corresponding to Ndata varying structures, where Ndata

is decided based on design experience and available
computational power (an appropriate amount Ndata of
data sufficiently interprets the solving space with the
minimum computation cost);

3) Simulate the Ndata structures to obtain the EM responses
of interest Rj,i (i ∈ [1, Ndata], j ∈ [1, NR]), where
NR > 1 indicate that multiple types of EM responses
are considered;

4) Define a feature vector Qi for each set of Rj,i (definition
of Qi is presented for each implementation in Section
III);

5) Normalize geometric parameters, EM responses, and fea-
ture vectors between 0 and 1 (normalization procedure is
explained for each implementation in Section III);

6) Divide the Ndata sets of geometric parameters, simulated
responses, and feature vectors into a training, validation,
and test dataset in a ratio of 7 : 2 : 1;

7) Train a forward model that can take the geometric pa-
rameters as input and predict the EM responses;

8) Integrating the pre-trained forward model, train a pro-
posed model that can take practical design specifications
as input and generate optimized EM structures.

D. Design Stage

Fig. 2(b) demonstrates how the proposed MCVAE works
during the design process:

1) The given practical constraints are described as a feature
vector Q∗ = [fmin, fmax, r1, ..., rj ]. The size of the
feature vector NR is minimized to contain only the
necessary information in the constraints. The default
elements include fmin, fmax, and r1 that define the
desired frequency range and maximum allowable value
for reflection coefficients.

2) A new Gaussian noise vector N∗
n is initialized arbitrarily.

Its size equals the dimensionality of the latent space
determined in the training stage.

3) Each feature vector Q∗ is concatenated with an initialized
Gaussian noise vector N∗

n. The concatenated vector is
fed into the decoder to reconstruct the EM responses
over frequency R∗

j,n (j ∈ [1, NR]) that fit the predefined
constraints Q∗.

4) The reconstructed responses R∗
j,n (j ∈ [1, NR]) are fed

into the encoder to predict the geometric variables P∗
n of

an optimized EM structure design.
5) Repeat step 2-4 to obtain multiple structures P∗

n, where
n can be set between 1 and Nn. Nn is set as 3 in
the implementations in this paper. Nn can be increased
if severe non-uniqueness occurs or better structures are
needed.

6) The designed structures are simulated via CST to evaluate
the responses. The simulated responses are evaluated to
select the optimal EM structure design that best aligns
with the specified practical constraints.

There might be concerns that reliance on random noise as
input could lead to inconsistent and suboptimal designs. It is
true that the output design is not fixed with a random noise
as input. The proposed model is specifically developed and
trained to generate output designs that are consistent with
the input practical constraints provided. Given the same input
practical constraints, the proposed model should produce out-
put designs that align with these constraints. The random noise
introduces variability into the output, allowing the model to
generate diverse output designs even when the same practical
constraints are provided. The noise is managed by sampling
from a standard Gaussian distribution to ensure consistency.
This variability allows the model to explore different plausible
output designs. It actually increases the possibility of finding
an optimal design by exploring a wider design space. While
the output designs are diverse, they are still consistent with
the input practical constraints.

It is important to differentiate between consistency and
diversity. Consistency refers to its ability to generate output
designs that are true to the practical constraints, and diversity
refers to the range of output designs that the model can pro-
duce under the same input practical constraints. The proposed
model aims to generate consistent output designs that fit the
practical constraints while allowing diversity to explore more
optimal designs.

Although human intervention may still be required to refine
or validate the final design, especially for complex and novel
designs, the proposed method significantly accelerates the
whole optimization and design process, greatly reducing re-
liance on human experience and intervention. With more data
involved to improve its accuracy and more implementations
to validate its effectiveness, it may further reduce the need for
human intervention.

E. Mitigating the Effects of Non-Uniqueness
We mitigate the effects of non-uniqueness through two as-

pects: incorporating a Gaussian noise vector and implementing
a forward-model-based loss term (Loss1). While Gaussian
noise allows exploration of the latent space, the effects of
non-uniqueness are primarily mitigated through the forward-
model-based loss function, which ensures that only structures
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yielding the correct EM response are retained. By doing so, the
proposed framework generates valid designs meeting practical
constraints, even if multiple solutions exist.

Let us consider a non-uniqueness condition where two
different combinations of geometric variables generate similar
EM responses, and j = 1, Rj,i is expressed as Ri for the sake
of simplicity,

|Rx − Ry| < ϵ, (8)
|Px − Py| ≫ ϵ. (9)

Here, ϵ is a minimum threshold. Note that the mechanism is
the same when j > 1 and multiple combinations of geometric
variables generate similar EM responses.

The existing ML inverse model-based methods define the
loss function as the difference between predicted and real
geometric variables,

Lossi = |P′
i − Pi|2,

= |I(Ri)− Pi|2, (10)

lim
Ri→Rx

Lossx =

{
|I(Rx)− Px|2,Ri = Rx,

|I(Ry)− Px|2,Ri = Rx ± ϵ = Ry,

=

{
|P′

x − Px|2,Ri = Rx,

|P′
y − Px|2,Ri = Rx ± ϵ = Ry,

(11)

lim
Ri→Ry

Lossy =

{
|I(Ry)− Py|2,Ri = Ry,

|I(Rx)− Py|2,Ri = Ry ± ϵ = Rx,

=

{
|P′

y − Py|2,Ri = Ry,

|P′
x − Py|2,Ri = Ry ± ϵ = Rx.

(12)

It can be observed that when Ri gets close to Rx and Ry ,
the similarity between Rx and Ry could cause discontinuity
of Lossx and Lossy ,

∆ lim
Ri→Rx

Lossx =
∣∣∣|P′

x − Px|
2 −

∣∣P′
y − Px

∣∣2∣∣∣ ≫ ϵ, (13)

∆ lim
Ri→Ry

Lossy =
∣∣∣∣∣P′

y − Py

∣∣2 − |P′
x − Py|

2
∣∣∣ ≫ ϵ. (14)

This discontinuity would lead to non-differentiability of the
loss function at Rx and Ry , deteriorating the model conver-
gence and accuracy.

The involvement of Gaussian noise Ni helps mitigate the
ambiguity caused by the non-uniqueness effects. The added
noise Ni introduces stochasticity into the decoding process.
It prevents the decoder from always producing the same
reconstructed response for similar inputs. Even if two different
structures (Px and Py) have very similar responses (Rx and
Ry), the decoder will likely produce two different recon-
structed responses (R′′

x and R′′
y ) because of the random noise

Ni. The ambiguity between Rx and Ry is alleviated, reducing
the discontinuity and non-differentiability. This forces the
encoder to learn a more robust mapping, as it must account
for the variations introduced by the noise. In case of non-
uniqueness, the encoder is forced to distinguish between simi-
lar responses based on Ni. Essentially, Ni prevents the encoder
from collapsing different structures onto the same output,
thereby enhancing the model convergence and accuracy.

Integrating the forward-model-based loss term (Loss1) fur-
ther mitigates the non-uniqueness effects and encourages the
generation of optimized designs that satisfy the practical
constraints, even when multiple valid solutions exist. In the
assumed non-uniqueness condition, Loss1 can be described
as,

Loss1i = |R′
j,i − Ri|2,

= |F (Pi
′)− Ri|2,

= |F (E1(Ri))− Ri|2, (15)

lim
Ri→Rx

Loss1x =

{
|F (E1(Rx))− Rx|2,Ri = Rx,

|F (E1(Ry))− Rx|2,Ri = Rx ± ϵ = Ry,

(16)

lim
Ri→Ry

Loss1y =

{
|F (E1(Ry))− Ry|2,Ri = Ry,

|F (E1(Rx))− Ry|2,Ri = Ry ± ϵ = Rx.

(17)

Loss1 remains continuous,

∆ lim
Ri→Rx

Loss1x

=
∣∣∣|F (E1(Rx))− Rx|2 − |F (E1(Ry))− Rx|2

∣∣∣ < ϵ,

(18)
∆ lim

Ri→Ry

Loss1y

=
∣∣∣|F (E1(Ry))− Ry|2 − |F (E1(Rx))− Ry|2

∣∣∣ < ϵ.

(19)

Therefore, Loss1 is always differentiable, ensuring a good
model convergence level and high accuracy. The consequences
of the ambiguity between Rx and Ry are canceled out by
the pre-trained forward model (F). The modified encoder may
output various geometric variables that generate similar EM
responses. Loss1 does not directly compare predicted (P′

x/y)
and actual (Px/y) structures. Instead, it compares the responses
(R′

x/y) generated by the predicted structure (using the forward
model) with the target responses (Rx/y). The forward model
(F) can tolerate these variances of the predicted geometric
variables and solely evaluate the generated EM responses.
This is key because even if the encoder predicts different
structures, as long as those structures produce the correct
responses, Loss1 will be low. It forces the encoder to learn
to produce structures that generate the desired responses,
aligning well with the goal of end-to-end design. Given a
set of practical constraints, the well-trained modified encoder
will produce an optimized output structure, that generates the
desired responses, during each design process. It outputs a new
output structure for the fixed requirements if a new Gaussian
noise vector is initialized in a new design process. Designers
can obtain multiple valid structures by running the design
process multiple times Nn. The designed structures can be
evaluated using full-wave simulation, from which designers
can obtain an optimal EM structure to match the most closely
with the specified practical constraints.

III. IMPLEMENTATION

The effectiveness of the proposed design framework is
validated through the first three implementations: a linear-
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to-circular polarization converter design, a Fourier-phased
metasurface design, and a slotline filter design. Each imple-
mentation includes four arbitrarily chosen design scenarios.
Genetic Algorithm (GA)- and Particle Swarm Optimization
(PSO)-based design methods are employed for comparison.
The implementation results indicate that the proposed frame-
work achieves an end-to-end design from practical constraints
to optimized structure designs. Various constraints can be
integrated into Q as input, and different types of EM structures
can be represented as output. For example, designers can
define additional parameters, such as rj+1 for average Gain
and [rj+2, rj+3, rj+4] for maximum 3D size, to integrate
antenna and size requirements.

A. Implementation I: Linear-to-Circular Polarization Con-
verter Design

1) Structure of the Linear-to-Circular Polarization Con-
verter: The polarization converter presented in [52] trans-
forms a linearly polarized wave into a circularly polarized
wave. It operates from 5GHz to 15GHz and consists of a
2-D arrangement of sub-wavelength unit cells. The design
requirements are represented as Q = [fmin, fmax, r1]. fmin

and fmax define the desired operating frequency range. r1
indicates the maximum reflection coefficient value within the
desired frequency range, and the default value of r1 is −10 dB.
Fig. 3 shows the unit cell structure. It comprises four capacitive
patch layers, two wire grid layers, four substrate layers, and
three bonding layers. The patch and wire grid layers are metal
layers etched on the surfaces of the substrate layers. The top
and bottom substrate layers have two patch layers etched on
their outer sides, respectively. The remaining two patch layers
are etched onto the inner sides of the two middle substrate
layers, while their outer sides are etched with the two wire
grid layers, respectively. Each pair of adjacent substrate layers
is separated and bonded with a bonding layer. The substrate
layer uses Rogers RT/duroid 6010 with a dielectric constant
of εr = 10.2 and a thickness of h1 = 1.27mm. The bonding
layer is made of Rogers 4450F with a dielectric constant of
εr = 3.52 and a thickness of h2 = 0.1mm. The remaining
geometric variables (P = [p1x, p1y, w2x, w2y, p3x, p3y]) are
designated as tuning parameters, as listed in Table I.

2) Design Using Proposed Method: Training, validation,
and test datasets are collected to train the proposed model.
We arbitrarily define 300 sets of geometric variables (Pi,
i ∈ [1, 300]) within their tuning ranges, corresponding to 300
different structures. They are simulated via CST to collect
the 300 reflection coefficient curves (|S11|s). The values of
geometric variables are normalized and converted into Pi =
[ ¯p1x, ¯p1y, w̄2x, w̄2y, ¯p3x, ¯p3y], i ∈ [1, 300]. For example,
¯p1x = p1x−min(p1x)

max(p1x)−min(p1x)
.

Each |S11| curve is discretized into a vector of size 51
(R1,i), containing |S11| values evaluated at 51 equally spaced
frequency points from 5GHz to 15GHz. The |S11| values,
expressed in decibels (dB), are converted to a linear magnitude
scale between 0 and 1. For each R1,i, a Qi is assigned, which
represents the practical design requirements that align well
with R1,i. The definition of Qi for R1,i follows six steps (a)-
(f):

w2x

p3y

x

y

z

x

y

z

p1x

p1y

p3x

w2y

h1 h2

Fig. 3. Unit cell structure of the linear-to-circular polarization converter.

TABLE I
IMPLEMENTATION I: TUNABLE AND FIXED GEOMETRIC PARAMETERS

FOR LINEAR-TO-CIRCULAR POLARIZATION CONVERTER DESIGN

Parameter Value (mm) Parameter Value (mm)
p1x [2.50, 3.30] p1y [0.60, 1.40]
w2x [0.40, 1.20] w2y [0.10, 0.30]
p3x [2.10, 2.90] p3y [1.20, 2.00]
h1 1.27 h2 0.10

(a) Set r1 = −10 dB;
(b) Find the minimum frequency fmin where R1,i ≤ r1 by

minfmin
R1,i(fmin)

≤ r1;
(c) Find the maximum frequency fmax where R1,i ≤ r1 by

maxfmax R1,i(fmax)
≤ r1;

(d) Set rnew as the maximum R1,i between fmin and fmax;
(e) If rnew > r1, update r1 by r1 = rnew, and repeat steps

(b)-(e);
(f) Set Qi = [fmin, fmax, r1].

Assisted by programming in Python, the definition of Qi

for all the R1,i (i ∈ [1, 300]) can be completed within
several seconds. We normalize Qi = [fmin, fmax, r1] to
Qi = [ ¯fmin, ¯fmax, r̄1] by

¯fmin =
fmin − 5GHz

15GHz− 5GHz
, (20)

¯fmax =
fmax − 5GHz

15GHz− 5GHz
, (21)

r̄1 =
max{−10 dB, max |S11|(fmin, fmax)}+ 10dB

10 dB
.

(22)

The 300 combinations of Pi, R1,i, and Qi are arbitrarily
divided into a training, a validation, and a test dataset at the
ratio of 7 : 2 : 1.

The end-to-end model is developed and optimized through
Bayesian optimization. Multiple hyperparameters are explored,
including the number of training epochs, the learning rate, the
batch size, the number of hidden layers, the number of neu-
rons, and the dimensionality of Gaussian noise. Specifically,
the number of training epochs is sampled from a quantized
uniform distribution ranging from 100 to 1000, with a step
size of 100. The learning rate is optimized using a discrete set
of values, [0.0001, 0.001, 0.01]. The batch size is sampled
from a quantized uniform distribution between 5 and 30, with
increments of 5. The number of neurons in each layer for
the encoder, decoder, and forward model is chosen from the
set [16, 32, 64, 128, 256]. The number of hidden layers
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Fig. 4. Training and validation losses of the proposed model over epochs
during the training process in Implementation I: Linear-to-Circular Polariza-
tion Converter Design. (a) Loss. (b) Loss1. (c) Loss2. (d) Loss3.
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Fig. 5. Test loss of the proposed model in Implementation I: Linear-to-
Circular Polarization Converter Design.

for the encoder and decoder is sampled from a quantized
uniform distribution between 1 and 5. The dimensionality of
the Gaussian noise vector is sampled from a quantized uniform
distribution between 3 and 10. The optimization is terminated
after 50 iterations without improvement or upon reaching the
maximum number of iterations, 1000. The validation loss on
the validation dataset serves as the assessment metric.

After 1000 iterations, the best combinations of hyperparam-
eters for the end-to-end model with the lowest validation losses
are determined. After optimization, the encoder has 1 hidden
layer of 256 neurons, and the decoder has 2 hidden layers of
16 and 128 neurons. The activation function is ReLU, except
for the Linear function for the output layer. The dimensionality
of latent space is 6. The batch size, number of epochs, and
learning rate are 15, 600, and 0.001, respectively. Adam is
utilized as the optimizer. The optimized forward model has 3
hidden layers of 256, 128, and 256 neurons. The batch size,
number of epochs, and learning rate are 30, 900, and 0.0001,

TABLE II
GEOMETRIC VARIABLES OF DESIGNED UNIT CELLS IN

IMPLEMENTATION I: LINEAR-TO-CIRCULAR POLARIZATION CONVERTER
DESIGN

Parameter (mm) p1x p1y w2x w2y p3x p3y
I-1 2.77 0.93 0.81 0.17 2.67 1.59
I-2 2.87 0.97 0.73 0.16 2.39 1.63
I-3 2.93 1.06 0.52 0.20 2.65 1.56
I-4 2.55 0.69 1.15 0.20 2.42 1.51
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Fig. 6. Reconstructed and Simulated EM responses in Implementation I:
Linear-to-Circular Polarization Converter Design. (a) I-1. (b) I-2. (c) I-3. (d)
I-4. (“Simulated 51” and “Simulated 501” represent results using 51 and
501 frequency points, respectively. The reconstructed results are the same for
both 51 and 501 frequency points and are denoted as “Reconstructed”.)

respectively. The remaining hyperparameters are the same as
the encoder and decoder.

The forward model is pre-trained using the same datasets.
It is optimized for the highest accuracy and is considered
sufficiently accurate after Bayesian optimization, as its ac-
curacy impacts the performance of the proposed end-to-end
model. The pre-trained forward model is fixed in the following
training stage of the proposed end-to-end model. Fig. 4 shows
the trends of training and validation losses of the proposed
end-to-end model over epochs during the training process,
which converge to 7.0 × 10−3 and 9.1 × 10−3, respectively.
After training, the proposed model is evaluated using the
test dataset. Fig. 5 exhibits the MSE distributions of the
generated EM responses on the test dataset. The average
MSE is 6.8 × 10−3, and the maximum MSE is 1.3 × 10−2.
Higher model accuracy can be achieved using a relatively
larger dataset (Ndata > 300). Consequently, the time and
computational cost required for data collection and model
training also increase. However, the cost of model training
remains negligible compared with data collection.

Four design cases are carried out to evaluate the proposed
model performance. We predefine four settings of design
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TABLE III
COMPARISON BETWEEN THE PROPOSED, GA-BASED, AND FORWARD-MODEL-BASED METHODS IN IMPLEMENTATION I: LINEAR-TO-CIRCULAR

POLARIZATION CONVERTER DESIGN (UNIT: HOURS)

Proposed GA-Based Forward-model-based
End-to-End Yes No No

Design Performance Offset ≤ ±0.1GHz Offset ≤ ±0.1GHz Offset ≤ ±0.1GHz
Data collection 4.32 - 4.32

Training 0.009 - 0.003
I-1 0.04 1.73 0.043
I-2 0.04 0.73 0.043
I-3 0.04 0.94 0.043
I-4 0.04 1.07 0.043
... ... ... ...

I-n 0.04 ... 0.043
Total 0.04n+ 4.329 0.91n+ 0.82 0.043n+ 4.323

requirements as Q∗
1,2,3,4,

Q∗
1 = [8.3GHz, 12.5GHz, −10 dB], (23)

Q∗
2 = [7.9GHz, 13.0GHz, −10 dB], (24)

Q∗
3 = [7.0GHz, 11.9GHz, −10 dB], (25)

Q∗
4 = [9.3GHz, 13.8GHz, −10 dB]. (26)

They are normalized, combined with arbitrarily initialized
Gaussian noise vectors N∗

n, and fed into the proposed model
to generate four linear-to-circular polarization converter unit
cell designs. Nn is set as 3, and 3 optimized structures are
generated for each Q∗

1/2/3/4. They are simulated using CST
to evaluate the generated |S11|ns, and an optimal structure is
determined for each Q∗

1/2/3/4. The geometric variables of the
optimal structures are listed in Table II. Fig. 6 compares the
generated |S11| curves (red dots) and reconstructed ones (blue
dash lines) that the decoder outputs. Reconstructed curves
represent the responses output by the decoder, while simulated
curves represent CST full-wave simulated responses of the
generated structures. They match well with the predefined
requirements Q∗

1,2,3,4, with a maximum frequency offset of
0.3GHz, 3% with reference to the center frequency 10GHz.

We also validate Implementation I when increasing the
frequency points from 51 to 501. A new model is optimized
and trained, and the generated |S11| curves are represented as
green solid lines. As the number of sampled frequency points
increases from 51 to 501, the training data contains richer in-
formation revealing the interpolation characteristics, enabling
the model to understand frequency-wise interpolation better.
Consequently, the model trained with 501 frequency points
generates more accurate |S11|. The alignment between the
generated responses and predefined requirements improves,
reducing the maximum frequency offset from 0.3GHz to
0.1GHz. A better design quality may be achieved if the num-
ber of training data can be increased from 300. This validates
the effectiveness of the proposed end-to-end framework for
the linear-to-circular polarization converter.

3) Comparison with Existing Methods: Existing ML-based
methods require detailed |S11| curves as input and thus need
significant modifications to enable end-to-end design directly
from practical constraints Q∗

1,2,3,4 to optimized converter
designs in Implementation I: Linear-to-Circular Polarization
Converter Design. A possible modification is integrating trans-

fer functions into the existing ML-based methods to transform
the constraints into detailed responses over frequency. How-
ever, transfer functions are typically established exclusively for
specific EM responses, such as pole-based transfer functions
for |S11|. It is difficult to generalize to other types of EM
structures.

For comparison, GA, as a representative of optimization
algorithm-based design methods, is employed in Implementa-
tion I: Linear-to-Circular Polarization Converter Design. We
use the built-in GA supported by CST to carry out the
four design tasks Q∗

1,2,3,4 individually. For a fair comparison,
the optimized design for the first task Q∗

1 is taken as the
starting point of the following design tasks Q∗

2,3,4. The initial
population size and mutation rate are 40 and 0.6, respectively.
The optimization stops when its best structure meets the pre-
defined constraints Q∗

1/2/3/4. Note that for Q∗
1, the generated

frequency band by the proposed method has a slight offset of
0.3GHz. Thus, the optimization process for Q∗

1 stops when
the offset of its generated frequency band does not exceed
0.1GHz.

The time needed for the optimization process in the four
design scenarios is compared with the proposed method in
Table III. Although the proposed method takes 4.33 hours
for data collection and model training, it can determine the
converter designs within 0.04 hours for design and 0.04 hours
for validation. Despite that using the first optimized design
as the starting point for the following design tasks Q∗

2,3,4

reduces the required time for Q∗
2,3,4, GA-based methods still

require a much longer time for each design task. Compared
to GA, the proposed method significantly reduces the required
time and computational costs as the number of design tasks
increases. As can be observed in Table III, the required
time and computational costs are mainly determined by the
simulation time. The simulation time is primarily determined
by the complexity of the geometry, the mesh density, and
the frequency range being simulated, rather than the number
of frequency points. As the design complexity increases, the
proposed method requires more time for data collection, while
the GA-based methods require more time for each design
task. As the number of design tasks grows, the total time
consumption of the GA-based methods increases faster than
the proposed method. In the long run, the proposed method
still significantly reduces the computation cost and improves



10

the design efficiency, even if the complexity of the EM
structures and their simulation time increases.

Compared with forward-model-based methods, the pro-
posed method excels in real-time applications by supporting
end-to-end design. Forward-model-based methods necessitate
an additional iterative optimization process during the design
stage. As listed in Table III, 0.04 hours+0.003 hours denotes
the validation requiring 0.04 hours and the extra iterative opti-
mization process requiring 0.003 hours. Although this iterative
optimization process is relatively fast (0.003 hours), it limits
the applicability of forward-model-based methods in real-time
scenarios. In dynamic environments that change unpredictably
and frequently, immediate adjustments to antenna parameters
are essential, for example, during the onsite calibration of a
phased array antenna. Real-time applications prioritize min-
imizing the time spent in the design stage, even if only by
a small margin. In such scenarios, the proposed method is
preferred due to its efficiency.

B. Implementation II: Fourier-phased Metasurface Design
1) Structure of the Fourier-phased Metasurface: The

Fourier-phased metasurface is proposed for wideband RCS
reduction in [53]. It is composed of 30 × 30 unit cells with
specific reflection phases. The phase distribution is calculated
by using the Fourier phase formula. The design requirements
can be denoted as Q = [fmin, fmax, r1, r2]. Here, fmin

and fmax define the desired frequency range. r1 represents
the maximum reflection coefficient within this range, and the
default value of r1 is −10 dB. r2 equals the reflection phase
calculated using the Fourier phase formula. As shown in Fig. 7,
the unit cell contains a cross-shaped patch layer and a ground
layer etched on the opposite sides of a substrate layer. The
substrate layer has a dielectric constant of εr = 4.4 and
thickness of h = 2mm. The unit cell’s thickness h and length
p are fixed values. The remaining 7 geometric parameters
(P = [l, m, g, w, r, lr, β]) are set as tuning variables
to modify the reflection phase. Their tuning ranges are listed
in Table IV.

2) Design Using Proposed Method: 500 sets of tuning
variables (Pi, i ∈ [1, 500]), EM responses (|S11 X-Pol.| and
arg(S11 Co-Pol.)), and EM features (Qi, i ∈ [1, 500]) are
collected to form training, validation, and test datasets at a
ratio of 7 : 2 : 1. Each combination of tuning variables is arbi-
trarily defined within the ranges in Table IV. Its corresponding
|S11 X-Pol.| and arg(S11 Co-Pol.) at 51 discrete frequency points
from 5GHz to 25GHz are simulated via CST. Qi describes
a set of design requirements that closely match with the
i-th |S11 X-Pol.| and arg(S11 Co-Pol.). Qi for |S11 X-Pol.| and
arg(S11 Co-Pol.) is obtained in seven steps (a)-(g):
(a) Set r1 = −10 dB;
(b) Find the minimum frequency fmin where |S11 X-Pol.| ≤

r1 by minfmin
|S11 X-Pol.|(fmin) ≤ r1;

(c) Find the maximum frequency fmax where |S11 X-Pol.| ≤
r1 by maxfmax

|S11 X-Pol.|(fmax) ≤ r1;
(d) Set rnew as the maximum |S11 X-Pol.| between fmin and

fmax;
(e) If rnew > r1, update r1 by r1 = rnew, and repeat steps

(b)-(e);
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h
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Fig. 7. Structure of the Fourier-phased metasurface.

TABLE IV
IMPLEMENTATION II: TUNABLE AND FIXED GEOMETRIC PARAMETERS

FOR FOURIER-PHASED METASURFACE

Parameter Value Parameter Value
l (mm) [1.10, 2.10] m (mm) [2.50, 3.50]
g (mm) [0.40, 0.60] w (mm) [0.10, 0.30]
r (mm) [0.70, 0.90] lr (mm) [2.50, 3.10]

β (degrees) [0, 90] h (mm) 2.00
p (mm) 5

(f) Set r2 as the average value of arg(S11 Co-Pol.) between
fmin and fmax;

(g) Set Qi = [fmin, fmax, r1, r2].
For the normalization of Qi = [ ¯fmin, ¯fmax, r̄1, r̄2],

¯fmin =
fmin − 5GHz

25GHz− 5GHz
, (27)

¯fmax =
fmax − 5GHz

25GHz− 5GHz
, (28)

r̄1 =
max{−10 dB, max |S11 X-Pol.|(fmin, fmax)}+ 10dB

10 dB
,

(29)
r̄2 = mean(R2,i(fmin, fmax)

). (30)

The values of the tuning variables are normalized and con-
verted into Pi = [l̄, m̄, ḡ, w̄, r̄, l̄r, β̄]i, i ∈ [1, 500]. For ex-
ample, l̄ = l−min(l)

max(l)−min(l) . The values of |S11 X-Pol.| are
transformed from decibel (dB) format to linear scale between
0 and 1 and converted into R1,i = 10

|S11 X-Pol.|
20 . The values of

arg(S11 Co-Pol.) are normalized and converted into

R2,i =
arg(S11 Co-Pol.)−min(arg(S11 Co-Pol.))

max(arg(S11 Co-Pol.))−min(arg(S11 Co-Pol.))
. (31)

The end-to-end model in Implementation II is also op-
timized using Bayesian optimization with the same search
space as described in Implementation I: Linear-to-Circular
Polarization Converter Design. The optimal architectures for
the encoder, decoder, and forward model are determined after
1000 iterations. The encoder has 5 hidden layer with 16, 256,
64, 32, and 32 neurons. The modified decoder has 2 hidden
layers with 64 and 256 neurons. The dimensionality of the
Gaussian noise vector is 10. The batch size is 5. The number
of epochs is 800. The learning rate is 0.001. The optimizer is
Adam. The activation function is the Linear function for the
output layer and ReLU for other layers. The optimized forward
model has 4 hidden layers of 256, 32, 256, and 256 neurons.
The batch size, number of epochs, and learning rate are 15,
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Fig. 8. Training and validation losses of the proposed model over epochs
during the training process in Implementation II: Fourier-phased Metasurface
Design. (a) Loss. (b) Loss1. (c) Loss2. (d) Loss3.
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Fig. 9. Test loss of the proposed model in Implementation II: Fourier-phased
Metasurface Design.

900, and 0.0001, respectively. The remaining hyperparameters
are the same as the encoder and decoder.

After optimization, the forward model is pre-trained using
the same datasets, and its accuracy is considered sufficient.
The pre-trained forward model is fixed in the following
training stage for the proposed end-to-end model. The training
and validation losses of the proposed end-to-end model over
epochs, as shown in Fig. 8, prove that the model converges
well. The final training and validation losses are 1.9 × 10−3

and 4.2×10−3, respectively. Fig. 9 shows the MSE distribution
of the generated EM responses on the test dataset, with
an average MSE of 2.1 × 10−3 and a maximum MSE of
4.4×10−3. The model accuracy can be improved by increasing
the dataset size to Ndata > 500. As a result, model training
and, particularly, data collection require more time and incur
higher computational costs. Note that the improvement trend
weakens gradually.

The proposed framework is validated in four design scenar-

TABLE V
GEOMETRIC VARIABLES OF DESIGNED UNIT CELLS IN
IMPLEMENTATION II: FOURIER-PHASED METASURFACE

Parameter l m g w r lr β
(mm) (mm) (mm) (mm) (mm) (mm) (degrees)

II-1 1.46 3.34 0.58 0.14 0.82 2.55 31.60
II-2 1.43 3.15 0.60 0.21 0.79 2.57 33.97
II-3 1.49 3.16 0.59 0.18 0.75 2.52 33.76
II-4 1.44 3.17 0.60 0.14 0.75 2.51 32.35
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Fig. 10. Reconstructed and Simulated EM responses in Implementation II:
Fourier-phased Metasurface Design. (a) II-1. (b) II-2. (c) II-3. (d) II-4.
(“Simulated 51” and “Simulated 501” represent results using 51 and 501
frequency points, respectively. The reconstructed results are the same for both
51 and 501 frequency points and are denoted as “Reconstructed”.)

ios, where the design requirements are predefined as Q∗
1,2,3,4,

Q∗
1 = [10.1GHz, 21.5GHz, −8 dB, −144◦], (32)

Q∗
2 = [10.9GHz, 22.6GHz, −9 dB, −151◦], (33)

Q∗
3 = [11.3GHz, 22.3GHz, −10 dB, −160◦], (34)

Q∗
4 = [10.9GHz, 21.5GHz, −8.5 dB, −155◦]. (35)
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TABLE VI
COMPARISON BETWEEN THE PROPOSED, PSO-BASED, AND FORWARD-MODEL-BASED METHODS IN IMPLEMENTATION II: FOURIER-PHASED

METASURFACE DESIGN (UNIT: HOURS)

Proposed PSO-Based Forward-model-based
End-to-End Yes No No

Design Performance Offset ≤ ±0.2GHz Offset ≤ ±0.2GHz Offset ≤ ±0.2GHz
Data collection 4.55 - 4.55

Training 0.07 - 0.01
II-1 0.03 1.64 0.033
II-2 0.03 0.54 0.033
II-3 0.03 0.57 0.033
II-4 0.03 0.44 0.033
... ... ... ...

II-n 0.03 ... 0.033
Total 0.03n+ 4.62 0.517n+ 1.123 0.033n+ 4.56

The normalized Q∗
1,2,3,4 are combined with arbitrarily ini-

tialized Gaussian noise vectors N∗
n and fed into the pro-

posed model to determine four settings of geometric vari-
ables, leading to four designed unit cells. Specifically, the
Q∗

1,2,3,4 are combined with new initialized Gaussian noise
vectors N∗

n (n ∈ Nn) and fed into the decoder to recon-
struct |S11 X-Pol.|n and arg(S11 Co-Pol.)n first. Afterward, the
reconstructed |S11 X-Pol.|n and arg(S11 Co-Pol.)n are fed into
the encoder to generate the geometric variables. Nn is set as
3. For each Q∗

1/2/3/4, 3 optimized structures are generated
and simulated using CST to evaluate the generated |S11|ns.
An optimal structure is determined for each Q∗

1/2/3/4. The
predicted geometric variables of the optimal structure are listed
in Table V. The designed unit cells are simulated via CST to
evaluate their |S11 X-Pol.| and arg(S11 Co-Pol.). The simulated
|S11 X-Pol.| or arg(S11 Co-Pol.) are represented as red dots in
Fig. 10, matching well with the predefined constraints.

When increasing the frequency points from 51 to 501,
the simulated results, denoted as green solid lines, align
better with the predicted results and the predefined practical
constraints, reducing the frequency offset from 0.4GHz to
0.2GHz. Better design quality may be realized by further
increasing the training dataset size to enhance the model’s
accuracy. The implementation results show that the proposed
model achieves an effective end-to-end design for the Fourier-
phased metasurface from practical constraints to satisfactory
structures.

3) Comparison with Existing Methods: As discussed in
Section III-A3, the existing ML-based methods are not devel-
oped for practical end-to-end implementation in Implementa-
tion II: Fourier-phased Metasurface Design. To ensure a fair
comparison, the PSO-based method is implemented across the
four design scenarios Q∗

1/2/3/4, using the optimized design for
the first design task Q∗

1 as the starting point for the following
three tasks Q∗

2,3,4. The design process is conducted using the
built-in PSO optimizer in CST. The population size is 30,
requiring 30 simulation runs per iteration. It follows similar
stopping criteria as in Implementation I: Linear-to-Circular
Polarization Converter Design.

Table VI compares the time needed in the PSO-based and
the proposed methods for the four design tasks. While the
proposed method takes 4.55 hours to prepare the dataset and
0.07 hours to train the model, the time needed for each design

process is reduced to around 0.03 hours for both design and
validation. The PSO-based methods require a long iterative
simulation time for each design task, even though the required
time is reduced for the following design tasks with the first
optimized design as the starting point. By comparison, the
proposed method significantly saves overall time and compu-
tational costs as the number of design tasks increases. For
more complex design tasks requiring longer simulation time,
the time of data collection for the proposed method increases.
However, the required simulation time during each design task
for the PSO-based methods increases faster. In the long term,
the proposed method still significantly improves the design
efficiency.

The proposed method outperforms forward-model-based
methods by enabling end-to-end design. In contrast, forward-
model-based methods require an additional iterative optimiza-
tion process during the design phase. Although this process is
relatively quick (0.003 hours), it restricts the use of forward-
model-based methods in real-time scenarios. In these de-
sign tasks, environments change unpredictably and frequently,
necessitating immediate adjustments to antenna parameters.
Real-time applications demand a reduced design time, even
by a small margin, highlighting the exceptional capability of
the proposed end-to-end methods.

C. Implementation III: Slotline Filter Design

1) Structure of the Slotline Filter Design: The slotline filter
described in [54] has been selected as the design target for
Implementation III. This filter operates over a frequency range
from 1GHz to 15GHz, requiring specific performance in its
passband and stopband. Its 3D and top-view representations
are depicted in Fig. 11. According to Fig. 11(a), the filter
comprises three metallic and two dielectric layers. The top
and bottom layers feature two open-ended stepped microstrip
lines, as illustrated in Fig. 11(b). The central layer serves as a
common ground plane and contains a folded slot resonator, as
shown in Fig. 11(c). Roger’s RO4003C is used as the substrate
material, characterized by a dielectric constant of εr = 3.38
and a thickness of 0.813mm. The filter’s geometric parameters
are detailed in Table VII. Among these parameters, six are
chosen as tuning variables for the design process: lm, wm, ls1,
ls2, ls3, and ws. The remaining parameters are held constant.
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Fig. 11. Structure of the filter.

TABLE VII
IMPLEMENTATION III: TUNABLE AND FIXED GEOMETRIC PARAMETERS

FOR FILTER DESIGN

Parameter Value (mm) Parameter Value (mm)
lm [4.7, 6.7] wm [1.3, 2.8]
ls1 [9.5, 11.5] ls2 [1.2, 1.7]
ls3 [2.1, 2.6] ws [0.15, 0.45]
lf 12.5 wf 1.8
l 25 w 20
h 0.813

2) Design Using Proposed Method: We collect training,
validation, and test datasets to train the proposed model.
500 sets of geometric variables (Pi, where i ranges from
1 to 500) are defined within their respective tuning ranges,
corresponding to 500 distinct structures. These structures
are simulated using CST to obtain 500 reflection coefficient
curves (|S11| values), showing their filtering performance
within the passband and low/high stopband. The geomet-
ric variable values are normalized and expressed as Pi =
[ ¯lm, w̄m, ¯ls1, ¯ls2, ¯ls3, w̄s], where i ranges from 1 to 500. For
instance, ¯lm = lm−min(lm)

max(lm)−min(lm) . Each |S11| curve is dis-
cretized into a vector of size 1001 (R1,i), containing |S11|
values evaluated at 1001 equally spaced frequency points from
1GHz to 15GHz. The |S11| values, expressed in decibels
(dB), are converted to a linear magnitude scale between 0

and 1, R1,i = 10
|S11|
20 .

For each R1,i, a corresponding Qi is assigned, representing
the distinct metrics within the passband and low/high stopband
of R1,i. Qi for R1,i is defined through eight steps (a)-(h):

(a) Find the minimum frequency flsb where R1,i ≤ −1 dB
by minflsb R1,i(flsb)

≤ −1 dB;
(b) Find the maximum frequency fhsb where R1,i ≤ −1 dB

by maxfhsb
R1,i(fhsb)

≤ −1 dB;
(c) Set r1 = −20 dB;
(d) Find the minimum frequency flpb where R1,i ≤ −20 dB

by minflpb R1,i(flpb)
≤ r1;

(e) Find the maximum frequency fhpb where R1,i ≤ −20 dB
by maxfhpb

R1,i(fhpb)
≤ r1;

(f) Set rnew as the maximum R1,i between flpb and fhpb;
(g) If rnew > r1, update r1 by r1 = rnew, and repeat steps

(c)-(g);
(h) Set Qi = [flsb, flpb, fhpb, fhsb, r1].
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Fig. 12. Training and validation losses of the proposed model over epochs
during the training process in Implementation III: Slotline Filter Design. (a)
Loss. (b) Loss1. (c) Loss2. (d) Loss3.
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Fig. 13. Test loss of the proposed model in Implementation III: Slotline Filter
Design.

The vector Qi = [ ¯flsb, ¯flpb, ¯fhpb, ¯fhsb, r̄1] is normalized using

f̄lsb/lpb/hpb/hsb =
flsb/lpb/hpb/hsb − 1GHz

15GHz− 1GHz
, (36)

r̄1 =
max{−20 dB, max |S11|(flpb, fhpb)}+ 20dB

20 dB
. (37)

Here, flpb and fhpb refer to the frequencies where the passband
(|S11| ≤−20 dB) starts and ends, respectively; flsb indi-
cates the frequency where the low stopband (|S11| ≥−1 dB)
ends; fhsb denotes the frequency where the high stopband
(|S11| ≥−1 dB) begins; r1 represents the maximum reflection
coefficient within the passband. Note that the insertion loss
within the low/high stopbands is set at 1 dB. If distinct inser-
tion loss metrics are needed for the low and high stopbands,
additional parameters, such as r2 and r3, can be introduced to
allow for controllable insertion loss in low and high stopbands.
The 500 combinations of Pi, R1,i, and Qi are arbitrarily
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divided into training, validation, and test datasets in a ratio
of 7 : 2 : 1.

The end-to-end model undergoes optimization using
Bayesian techniques, similar to Implementations I and II,
with the same defined search space. After 1000 iterations, the
optimal architectures for the encoder, decoder, and forward
model are established. The encoder consists of five hidden
layers with 128, 64, 64, 256, and 32 neurons, respectively. The
modified decoder features two hidden layers containing 64 and
256 neurons, respectively. The dimensionality of the Gaussian
noise vector is set at 9. The model employs a batch size of 10,
runs for 700 epochs, uses a learning rate of 0.001, and utilizes
the Adam optimizer. The activation functions are ReLU for the
hidden layers and Linear for the output layer. The optimized
forward model includes four hidden layers with 128, 128, 256,
and 256 neurons, with a batch size of 5, epochs of 1000, and
a learning rate of 0.0001, while other hyperparameters remain
consistent with the encoder and decoder.

After optimization, the forward model is pre-trained using
identical datasets, achieving satisfactory accuracy. This pre-
trained forward model is then fixed for subsequent training of
the proposed end-to-end model. The training and validation
losses across epochs, illustrated in Fig. 12, confirm successful
model convergence. Final training and validation losses reach
values of 4.05× 10−4 and 4.16× 10−4, respectively. Fig. 13
displays the MSE distribution for generated EM responses on
the test dataset, noting an average MSE of 4.3× 10−3 and a
maximum MSE of 4.5×10−2. Enhancing model accuracy can
be achieved by expanding the dataset size to more than 500
data points, which necessitates increased time and computa-
tional resources for model training and data gathering. It is
important to mention that the improvement trend diminishes
progressively.

The proposed framework is validated in four design scenar-
ios, where the design requirements are predefined as Q∗

1,2,3,4,

Q∗
1 = [2.8GHz, 4.4GHz, 8.0GHz, 10.5GHz, −20 dB],

(38)
Q∗

2 = [2.9GHz, 4.5GHz, 9.8GHz, 11.4GHz, −20 dB],
(39)

Q∗
3 = [2.8GHz, 4.3GHz, 9.9GHz, 11.6GHz, −20 dB],

(40)
Q∗

4 = [2.8GHz, 4.4GHz, 8.5GHz, 10.6GHz, −20 dB].
(41)

The normalized Q∗
1,2,3,4 are combined with arbitrarily initial-

ized Gaussian noise vectors N∗
n and fed into the proposed

model to determine four settings of geometric variables,
leading to four designed unit cells. Specifically, the Q∗

1,2,3,4

are combined with new initialized Gaussian noise vectors N∗
n

(n ∈ Nn) and fed into the decoder to reconstruct |S11|n first.
Afterward, the reconstructed |S11|n is fed into the encoder
to generate the geometric variables. Nn is set as 3. For each
Q∗

1/2/3/4, 3 optimized structures are generated and simulated
using CST to evaluate the generated |S11|ns. An optimal struc-
ture is determined for each Q∗

1/2/3/4. The predicted geometric
variables of the optimal structure are listed in Table VIII. The
designed unit cells are simulated via CST to evaluate their

TABLE VIII
GEOMETRIC VARIABLES OF DESIGNED UNIT CELLS IN

IMPLEMENTATION III: SLOTLINE FILTER DESIGN

Parameter (mm) lm wm ls1 ls2 ls3 ws

III-1 6.54 1.62 10.17 1.33 2.43 0.21
III-2 6.25 1.75 9.98 1.29 2.32 0.28
III-3 6.21 2.08 10.19 1.34 2.35 0.30
III-4 6.51 1.64 10.11 1.32 2.40 0.22
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Fig. 14. Reconstructed and Simulated EM responses in Implementation III:
Slotline Filter Design. (a) III-1. (b) III-2. (c) III-3. (d) III-4.

|S11|. The simulated |S11| is represented as green solid lines
in Fig. 14, matching well with the predefined constraints and
reconstructed |S11| denoted as blue dash lines, indicating the
effectiveness of the proposed method.

3) Comparison with Existing Methods: As mentioned, the
existing ML-based methods have not been developed for
practical end-to-end implementation in Implementation III:
Slotline Filter Design. To ensure a fair comparison, the PSO-
based method is implemented across the four design scenarios
Q∗

1/2/3/4, using the optimized design for the first design
task Q∗

1 as the starting point for the following three tasks
Q∗

2,3,4. The design process is conducted using the built-in
PSO optimizer in CST. The population size is 30, requiring
30 simulation runs per iteration. It follows similar stopping
criteria as in Implementation I and II.

Table IX compares the time needed in the PSO-based and
the proposed methods for the four design tasks. As the simula-
tion complexity of the slotline filter in Implementation III in-
creases, the proposed method takes 56.75 hours to prepare the
dataset and 0.043 hours to train the model. The time needed
for each design process is reduced to around 0.34 hours for
both design and validation. The PSO-based methods require a
long iterative simulation time for each design task, even though
the required time reduces for the following design tasks with
the first optimized design as the starting point (17.02 hours
for the first design task, on average 10.07 hours for the
following design tasks). By comparison, the required time and
computational costs of the PSO-based methods increase faster
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TABLE IX
COMPARISON BETWEEN THE PROPOSED, PSO-BASED, AND FORWARD-MODEL-BASED METHODS IN IMPLEMENTATION III: SLOTLINE FILTER DESIGN

(UNIT: HOURS)

Proposed PSO-Based Forward-model-based
End-to-End Yes No No

Design Performance Offset ≤ ±0.1GHz Offset ≤ ±0.1GHz Offset ≤ ±0.1GHz
Data collection 56.75 - 56.75

Training 0.043 - 0.04
III-1 0.34 17.02 0.344
III-2 0.34 10.35 0.344
III-3 0.34 10.78 0.344
III-4 0.34 9.08 0.344

... ... ... ...
III-n 0.34 ... 0.344
Total 0.34n+ 56.793 10.07n+ 6.95 0.344n+ 56.79

as the number of design tasks increases, indicating the superior
design efficiency of the proposed method.

The proposed method surpasses forward-model-based meth-
ods by facilitating end-to-end design. Unlike forward-model-
based approaches, which require a supplementary iterative
optimization process, the proposed method is better suited for
real-time scenarios where environments change unpredictably
and frequently, necessitating swift adjustments to antenna pa-
rameters. Real-time applications benefit from reduced design
time, underscoring the superior efficiency of the proposed
end-to-end method. Forward-model-based methods are better
suited for sensitivity analysis and exploring a wide range of
design spaces.

In the long run, the proposed design framework significantly
reduces computational costs and improves design efficiency.
For example, wireless communication terminal manufactur-
ers face high costs and lengthy timelines in designing and
updating antennas for various products, such as smartphones
and tablets, using traditional methods that require extensive
EM simulations. By implementing the proposed framework,
the companies can significantly reduce these burdens. Their
EM properties and past antenna designs form a comprehensive
dataset to train the MCVAE model. The developed MCVAE
model allows for rapid end-to-end design and update, re-
ducing the time from weeks to mere minutes per design
at a fraction of the cost. When meeting industry standards
with more restrictive design specifications, significant data
are required for training, and sophisticated architectures are
needed. Advanced machine learning techniques and high-
quality data acquisition can be integrated to ensure con-
vergence efficiency; parallel computation, transfer learning,
and small-sample machine learning can be incorporated to
balance the trade-offs between maintaining the performance
and reducing computational costs. Over the long term, the
proposed framework saves the company substantial financial
and temporal resources, enabling faster market responsiveness
and fostering innovation in antenna design.

IV. DISCUSSION

We explore the approach’s capability of incorporating mul-
tiple design objectives and the impact of expanded geometric
parameters by conducting three additional implementations.
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Fig. 15. Structure of the linear-to-circular loop polarization converter. (L ∈
[3, 5.5]mm, W ∈ [2, 4.5]mm, a ∈ [0.2, 0.8], d ∈ [1.5, 2.8]mm, and s ∈
[0.1, 0.5]mm.)

TABLE X
GEOMETRIC VARIABLES OF DESIGNED LINEAR-TO-CIRCULAR LOOP

POLARIZATION CONVERTER

Parameter L (mm) W (mm) a d (mm) s (mm)
IV-1 3.89 2.13 0.22 2.52 0.12
IV-2 3.60 2.37 0.24 2.27 0.17
IV-3 3.15 2.15 0.64 2.26 0.20
IV-4 3.48 1.96 0.49 2.15 0.22

Their implementation processes are briefly introduced for the
sake of conciseness.

A. Multiple Independent Design Objectives

The proposed design framework is scalable to incorporate
multiple independent design objectives. Significant indepen-
dent design objectives can be integrated by following this
procedure:

1) Collect sufficient data that necessarily represent the entire
solving space;

2) Extend the feature vector Q to cover all the design
objectives;

3) Upgrade the model’s architecture by increasing the hid-
den layers and neurons and optimize the hyperparameters
to be compatible with the increasing data;

4) Get powerful computational resources to train the model.
Thus, the maximum number of independent design objectives
that our approach can handle depends on the available com-
putational power.

For validation, we implement this approach to design a
linear-to-circular loop polarization converter in [55] with two
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Fig. 16. Reconstructed and Simulated EM responses for the linear-to-circular
loop polarization converter. (a) IV-1. (b) IV-2. (c) IV-3. (d) IV-4.

independent design objectives, which are the transmission co-
efficients and axial ratio from 15GHz to 35GHz. The tuning
geometric parameters include L, W , a, d, and s, as shown
in Fig. 15. 300 pairs of data are collected to form a training,
validation, and test dataset in a ratio of 7 : 2 : 1. The feature
vector Q is defined as Q = [fmin, fmax, r1, r2], where fmin

and fmax confine the operating frequency range, r1 and r2
are the mean transmission coefficient and maximum axial ratio
over this range. The optimized model has 2 hidden layers with
[128, 256] neurons. The number of epochs, learning rate, and
batch size are 800, 0.0001, and 10, respectively. The respective
mean and max test loss are 2.6× 10−4 and 1.1× 10−3. Four
design specifications are initialized as Q∗

1,2,3,4,

Q∗
1 = [18.5GHz, 20.0GHz, −3.5 dB, 3 dB], (42)

Q∗
2 = [18.0GHz, 23.0GHz, −4.0 dB, 3 dB], (43)

Q∗
3 = [17.0GHz, 25.0GHz, −7.5 dB, 3 dB], (44)

Q∗
4 = [19.0GHz, 28.0GHz, −5.0 dB, 3 dB]. (45)

Fig. 16 compares reconstructed and simulated EM responses
of four designed structures in Table X. Their agreement
validates the effectiveness of the approach in incorporating
two independent design objectives.

Compared with the six-dimensional polarizer design with
one objective in Implementation I, this five-dimensional design
with two objectives maintains the performance using the same
amount of data. It indicates that the maximum number of
design objectives is inversely proportional to the geometric
dimensionality at fixed computational costs.

With finite computational power, the maximum number of
independent design objectives (Ninput) that our approach can

TABLE XI
IMPLEMENTATION V: DOUBLE-EXPANDED PARAMETER RANGE FOR

LINEAR-TO-CIRCULAR POLARIZATION CONVERTER DESIGN

Parameter Value (mm) Parameter Value (mm)
p1x [2.10, 3.70] p1y [0.20, 1.80]
w2x [0.10, 1.70] w2y [0.10, 0.50]
p3x [1.70, 3.30] p3y [0.80, 2.40]

TABLE XII
IMPLEMENTATION VI: TRIPLE-EXPANDED PARAMETER RANGE FOR

LINEAR-TO-CIRCULAR POLARIZATION CONVERTER DESIGN

Parameter Value (mm) Parameter Value (mm)
p1x [1.70, 4.10] p1y [0.10, 2.50]
w2x [0.10, 2.50] w2y [0.10, 0.70]
p3x [1.30, 3.70] p3y [0.40, 2.80]

TABLE XIII
GEOMETRIC VARIABLES OF DESIGNED UNIT CELLS IN

IMPLEMENTATION V: LINEAR-TO-CIRCULAR POLARIZATION CONVERTER
DESIGN WITH DOUBLE-EXPANDED PARAMETER RANGE

Parameter (mm) p1x p1y w2x w2y p3x p3y
V-1 2.49 0.62 1.24 0.24 2.22 1.58
V-2 2.65 1.16 1.34 0.30 2.58 1.54
V-3 2.50 0.86 0.78 0.25 2.64 1.39
V-4 2.68 0.77 1.57 0.38 2.86 1.64

TABLE XIV
GEOMETRIC VARIABLES OF DESIGNED UNIT CELLS IN

IMPLEMENTATION VI: LINEAR-TO-CIRCULAR POLARIZATION
CONVERTER DESIGN WITH TRIPLE-EXPANDED PARAMETER RANGE

Parameter (mm) p1x p1y w2x w2y p3x p3y
VI-1 2.90 1.72 1.36 0.23 2.62 1.27
VI-2 2.83 1.79 1.68 0.29 2.42 1.28
VI-3 3.11 2.09 1.11 0.39 2.89 1.44
VI-4 2.66 1.53 2.00 0.30 2.76 1.92

handle is inversely proportional to the geometric dimension-
ality (Noutput). Geometric dimensionality (Noutput) denotes
the number of tunable geometric parameters of the desired
EM structures. The geometric dimensionality (Noutput) de-
cides the output dimensionality, and the maximum number
of independent design objectives (Ninput) decides the input
dimensionality. Ninput × Noutput defines the dimensionality
of the design space, showing the design complexity. The
maximum number of independent design objectives reduces
as the geometric dimensionality increases.

B. Wide Geometric Parameter Ranges

To evaluate the effects of design parameter ranges on our
approach, we conduct Implementation V and VI with double-
expanded and triple-expanded parameter ranges, respectively,
compared with Implementation I: Linear-to-Circular Polar-
ization Converter Design. Their expanded ranges are listed
in Table XI and XII, respectively. The model’s architecture
remains unchanged. The overall dataset size is increased to
500 and 800, respectively. Initialized design requirements for
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Fig. 17. Reconstructed and Simulated EM responses in Implementation V:
Linear-to-Circular Polarization Converter Design with Double-Expanded Pa-
rameter Range. (a) V-1. (b) V-2. (c) V-3. (d) V-4.
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Fig. 18. Reconstructed and Simulated EM responses in Implementation VI:
Linear-to-Circular Polarization Converter Design with Triple-Expanded Pa-
rameter Range. (a) VI-1. (b) VI-2. (c) VI-3. (d) VI-4.

Implementation V are

Q∗
1 = [8.9GHz, 14.2GHz, −10 dB], (46)

Q∗
2 = [9.3GHz, 12.5GHz, −10 dB], (47)

Q∗
3 = [8.0GHz, 12.5GHz, −10 dB], (48)

Q∗
4 = [9.9GHz, 12.7GHz, −10 dB]. (49)

Initialized design requirements for Implementation VI are

Q∗
1 = [8.7GHz, 10.6GHz, −10 dB], (50)

Q∗
2 = [8.9GHz, 11.4GHz, −10 dB], (51)

Q∗
3 = [7.7GHz, 9.1GHz, −10 dB], (52)

Q∗
4 = [10.4GHz, 13.1GHz, −10 dB]. (53)

Table XIII and XIV show the geometric parameters of de-
signed structures. Fig. 17 and 18 compare their respective
generated responses.

The comparative results demonstrate that our framework
maintains the performance by increasing the amount of data
accordingly, when the design parameter range is expanded.
The simulated responses align well with the design specifi-
cations, although there is a difference between the simulated
and reconstructed curves. This difference might be attributed
to the increasing proportion of low-quality data occupied in
the expanded parameter sampling space. Similarly, increasing
the parameter dimensionality could also raise the low-quality
issue and increase the number of data needed for training.
Significant data are needed for an even wider parameter range
and higher dimensionality, and the model should be scaled
up accordingly, requiring extensive computational resources.
Besides increasing the number of samples, a more efficient
solution is incorporating high-quality data acquisition tech-
niques. Our previous work [32], [33] presented its capability
of maintaining the performance while greatly reducing the
computational costs by leveraging a performance-oriented
dynamic sampling strategy. Therefore, the proposed MCVAE
integrated with high-quality data acquisition techniques can
be an alternative for designing EM structures with extended
parameter range and dimensionality.

V. CONCLUSION

The end-to-end electromagnetic (EM) structure design
methods are preferred because they eliminate the need for
iterative trial-and-error processes, showing superior efficiency
and higher availability for real-time onsite design scenarios.
Existing end-to-end methods either demand impractical input
information or suffer from non-uniqueness effects. This pa-
per proposes a modified conditional variational autoencoder
(MCVAE) that achieves end-to-end design from practical
constraints to optimized EM structures, simultaneously solving
the impracticality issue and mitigating the effects of non-
uniqueness through robust latent space exploration and a
forward-model-based loss function. We validate its effective-
ness in multiple implementations: a linear-to-circular polar-
ization converter design, a Fourier-phased metasurface design,
a slotline filter design, a loop polarization converter design,
and a polarization converter design with double and triple-
expanded parameter ranges. The proposed design framework
can be extended to facilitate the end-to-end design of other
types of EM structures, bridging diverse practical constraints
to various optimized structure designs.
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