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Abstract—Electromagnetic (EM) modeling accelerates the de-
sign and optimization of EM structures by predicting their
frequency-dependent features such as |S11|. Current methodolo-
gies constrain each model to a fixed frequency range at specified
points, thereby necessitating the training of separate models for
different frequency conditions, which limits generalizability and
scalability in real-world applications. This paper introduces a
novel EM modeling framework with improved generalizability
and scalability. It significantly enhances modeling accuracy for
frequency conditions not previously encountered. The model can
be easily scaled up by incorporating new data with variable fre-
quency conditions, thereby further improving the generalizability.
Our method incorporates a frequency-wise learning strategy
that enforces a robust understanding of the frequency-dependent
working mechanism of EM structures. We demonstrate the
effectiveness of our approach through multiple implementations
with variable frequency conditions. The comparative results
validate the improved generalizability and scalability, showcasing
its potential to simplify and enhance EM design processes.

Index Terms—Electromagnetic modeling, generalizability, ma-
chine learning, scalability.

I. INTRODUCTION

ELECTROMAGNETIC (EM) modeling plays a pivotal
role in the design and analysis of electromagnetic struc-

tures, which are integral to a wide array of applications
ranging from telecommunications to medical devices. The
key challenge in this domain is to predict the frequency-
dependent characteristics, such as |S11|, according to the
geometric parameters, which is essential for understanding the
performance of EM structures.

Full-wave simulation is a common technique for EM mod-
eling. However, each simulation process can require pro-
hibitively expensive computational resources. The design and
optimization of an EM structure require many modeling
iterations, resulting in high computational costs. Therefore,
machine learning-based approaches for EM modeling have
been proposed to serve as faster alternatives to full-wave
simulation for predicting EM characteristics. By training using
sufficient simulation data, the models can replicate the rela-
tionship between geometric parameters of EM structures and
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Existing Methods: Fixed frequency condition → Limited generalizability & scalability

Proposed Method: Variable frequency conditions → Enhanced generalizability & scalability 
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Fig. 1. Illustration of motivation. (a) Existing methods have fixed frequency
ranges and points, restricting their generalizability and scalability. (b) The
proposed method aims to enhance generalizability (improve the accuracy at
unseen frequency outside the training frequency range) and scalability (be
compatible with variable frequency ranges and points).

their frequency-dependent features. Although developing these
models requires significant simulation data, once trained, they
enable fast and accurate modeling, significantly accelerating
the long-term design and optimization processes of EM struc-
tures. Our previous works [1], [2] significantly reduce the data
needed for training the surrogate models by integrating with
high-quality data acquisition methods.

Multiple types of EM modeling methods have been investi-
gated, such as Gaussian process regression [3]–[6], polynomial
chaos expansion [7]–[9], kriging [10]–[13], support vector
regression [14]–[16], and neural networks [17]–[35].

Gaussian process regression provides probabilistic predic-
tions by assuming a Gaussian process with characterized mean
and covariance functions. J. Jacobs used Gaussian process
regression to estimate how the varying finite substrate and
ground plane size affected the gain of microstrip antennas
at fixed frequency points [4]. Z. Zhang et al. developed a
two-level Gaussian process regression method for accurate
surrogate modeling of antennas [5]. The first-level model
imitated the relationship between the geometric parameters
and EM responses over the frequency band of interest, and
it was complemented by the second-level model to predict
the difference between the first-level predictions and simulated
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EM responses. C. Hu et al. proposed a nonstationary Gaussian
process surrogate model to be compatible with the dynamic
conditions during the optimization process [6]. Its nonstation-
arity was achieved by dynamically adjusting the mean and
covariance functions based on the dynamic decision variables.
Gaussian process regression requires careful selection of ker-
nel functions and could be computationally expensive for large
datasets.

Polynomial chaos expansion aims to formulate the uncer-
tainty propagation features of complex systems. It represents
a stochastic process as a series expansion of orthogonal
polynomials, which are determined based on the probability
distribution of the input random variables. J. Du et al. applied
polynomial chaos expansion to model the relationship between
random disturbances and a parsimonious representation of the
far-field radiation of antennas [7]. A. Petrocchi et al. analyzed
the residue calibration uncertainty and consequent non-linear
capacitances in microwave transistor non-linear models [8].
Expanded vector spherical harmonics of the far field radiated
by antennas subject to random variables were modeled through
polynomial chaos expansion in [9]. Polynomial chaos expan-
sion requires knowledge of probability distributions.

Kriging, also known as kriging interpolation, uses weighted
averages of known points to predict unknown points based
on spatial correlations. S. Koziel et al. established a co-
kriging model for accurate antenna modeling [10], which
was trained using sparse high-fidelity and dense low-fidelity
EM simulation data. A triangulation-based constrained kriging
modeling method was proposed in [11] for contemporary
antenna structures. They significantly reduced the training
data needed to develop the surrogate model by restricting the
solving space based on a set of optimized reference designs. A
similar modeling technique was introduced in [12], replacing
the optimized reference designs with a small set of random
observables. Integrating the performance-driven data confine-
ment with multi-resolution simulations further enhanced the
modeling performance [13]. Kriging is suitable for spatially
stationary data distributions.

Support vector regression, a type of support vector machine
designed for regression tasks, optimizes a function that fits the
training data by minimizing deviations from the true target
values within a specified margin, while maintaining model
simplicity. D. Prado et al. applied support vector regression
to model the elements of shaped-beam reflectarray antennas
as a substitute for full-wave simulation [14], [15]. J. Jacobs et
al. established a Bayesian support-vector-regression model for
planar antennas. They reduced the number of required training
points by exploiting coarse-discretization EM simulations. The
modeling performance of support vector regression is sensitive
to the choice of hyperparameters.

Inspired by the human brain, neural networks with intercon-
nected artificial neurons organized in layers can learn complex
projections and data patterns. C. Roy et al. employed an
artificial neural network (ANN) to map the equivalent circuit
model parameters to EM model geometric parameters of the
target EM structure within a band of interest [24]. The target
EM structure is segmented into a series of discontinuities.
Each discontinuity and coupling between the discontinuities

is associated with an equivalent circuit model to extract the
circuit parameters over the desired band. This methodology
ensures the consistency of the extracted circuit parameters
over a wide frequency band. H. Kabir et al. presented a
systematic neural network framework for inverse modeling
of microwave waveguide filters [25]. The source data with
non-unique multivalued solutions were separated into multiple
groups with only unique solutions, which were used to train
multiple inverse models. These models were integrated to
improve the modeling performance by alleviating the effects of
non-uniqueness. They formulated a set of neural network sub-
models for modeling waveguide filters in [26], decomposing
the task into multiple low-dimensional problems and thus
reducing the computational cost. Neural network modeling
was combined with physics-informed domain confinement for
small-sample antenna modeling in [27]. W. Liu et al. pro-
posed model-order reduction-based neuro-impedance matrix
transfer functions to enhance the modeling accuracy for two-
port microwave components [28]. Similarly, a pole-residue-
based transfer function was integrated with artificial neural
networks to model the reflection coefficients of frequency-
selective surfaces over desired frequency ranges [29].

The aforementioned modeling methods are inherently bound
to fixed frequency ranges and points, which show limited gen-
eralizability and scalability, as seen in Fig. 1(a). In real-world
scenarios, the existing simulation or measurement data might
derive from multiple design cases at variable frequency ranges.
For example, wireless communication terminal manufacturers
design and update an EM structure for diverse products,
such as smartphones and tablets, accumulating simulation and
measurement data at variable frequency ranges. It would cause
extra costs if we re-simulate or re-measure these products to
include all frequency ranges. A distinct surrogate model is
required for the EM structure over each frequency range with
fixed points of interest. The well-trained model cannot directly
predict the EM responses for unseen frequency conditions,
where the frequencies fall outside the training frequency range.
Although the EM similarity laws allow indirect estimations
over new frequency ranges by proportioning the geometric
parameters, the predictable frequency points are fixed to be
proportional to the training frequency points, multiple propor-
tioning processes are needed to make up a wide frequency
range, and the modeling performance severely deteriorates.
Training a multitude of models tailored to multiple frequency
bands demands significant computational resources and time.
To resolve this challenge, an intuitive solution is to extend the
target frequency range and densify the points to cover all the
desired frequency ranges and points, resulting in redundant
solution space and increased complexity.

The increasing diversity of EM applications necessitates a
more efficient modeling strategy that accommodates variable
frequency conditions without needing multiple models. To
address the challenge, this paper proposes an innovative EM
modeling framework that unifies the modeling process across
different frequency conditions into a single, cohesive model, as
shown in Fig. 1(b). It is mainly achieved through frequency-
wise learning. Unlike existing methods that attempt to imi-
tate the relationship between geometric parameters and EM
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Fig. 2. Comparison of working principle between the existing and proposed methods. (a) Existing methods use fixed frequency ranges and points, limiting
generalizability and scalability. (b) The proposed method integrates frequency-wise learning, leading to enhanced generalizability (improved accuracy in unseen
frequency range) and scalability (compatible with variable frequency range and points).

responses over the frequency band of interest, our approach
focuses on modeling EM responses at arbitrary frequency
points subject to certain frequency-dependent electrical dimen-
sions. These electrical dimensions are transformed from the
geometric parameters. By leveraging frequency-wise learning,
our approach dynamically adapts to varying frequency bands
and points, enhancing generalizability and scalability. We con-
duct multiple implementations to evaluate the generalizability
and scalability of the proposed method. Implementation A:
Meander-Line Polarizer considers a five-dimensional modeling
task with two different frequency conditions. Implementation
B: Planar Metasurface Lens increases the dimensionality to
ten and has three different frequency conditions. The com-
parative results demonstrate the improved generalizability and
scalability of the proposed method. The potentials and limi-
tations of our approach are discussed when further increasing
the dimensionality and complexity in Implementation C. By
addressing the generalizability and scalability issues inherent
in current EM modeling practices, our work enables more
efficient design and optimization of EM structures.

The main contributions of this paper are summarized as
follows:

1) A novel frequency-wise modeling framework is proposed
for accelerating the design and optimization of EM struc-
tures.

2) We improve the generalizability by enforcing the surro-
gate model to obtain a robust understanding of the EM
similarity laws and non-linear proportioning characteris-
tics of EM structures.

3) We enhance the scalability to be compatible with variable
frequency conditions.

4) We conduct a comprehensive comparison of our proposed
method against the existing methods through multiple
implementations, which involve increased dimensionality
and variable frequency conditions.

The remainder of this paper is organized as follows. Section
II explains the working principle of the proposed framework.
Section III evaluates the generalizability and scalability of our
framework through Implementation A: Meander-Line Polar-
izer, which considers a five-dimensional modeling problem
under two different frequency conditions. Section IV conducts
further validations as the dimensionality increases to ten, and
three different frequency conditions are considered, referred
to as Implementation B: Planar Metasurface Lens. Section
V clarifies the potentials and limitations of our method for
higher-dimensional and more complex modeling applications.
Section VI gives the conclusion.

II. METHODOLOGY

Modeling an EM structure aims to develop a numerical
surrogate model to quickly predict its EM responses over the
frequency band of interest (such as |S11|) as its geometric
parameters change. Fig. 2 illustrates and compares the working
principle of the existing and proposed methods, where the
modeling of |S11| is used as an example. Note that |S11| is
only used as a representative of general EM responses for
simplicity in Fig. 2. The theoretical analysis in Section II
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is applicable to various EM responses such as EM fields,
scattering parameters, and phases.

A. Problem Statement

1) Training in Fixed Frequency Conditions: The working
principle of the existing methods, for example, Gaussian pro-
cess regression, kriging, support vector regression, and neural
networks, is shown in Fig. 2(a). Each pair of geometric pa-
rameters and EM responses over the desired frequency band is
formatted as two fixed-sized vectors, P and S(fmin, fmax, nf ),
which are normalized to P and S(fmin, fmax, nf ), respec-
tively, between 0 and 1. Here, fmin and fmax mark the
frequency range of interest, and nf denotes the number of
frequency points. Existing methods manage to estimate a
surrogate model Fe(·) that projects P to S(fmin, fmax, nf ),

S∗
n(fmin, fmax, nf ) = Fe(Pn), n ∈ {1, 2, · · · , N}. (1)

S∗(fmin, fmax, nf ) denotes the predicted normalized EM re-
sponses. N equals the number of training data. The surrogate
model Fe(·) is optimized by minimizing the mean squared
error (MSE) between the predicted and actual normalized
EM responses (S∗(fmin, fmax, nf ) and S(fmin, fmax, nf ),
respectively) for all the N training data,

Oe = min
Fe(·)

1

N

N∑
n=1

1

nf
|S∗

n(fmin, fmax, nf )

−Sn(fmin, fmax, nf )|2

= min
Fe(·)

1

N

N∑
n=1

1

nf
|Fe(Pn)− Sn(fmin, fmax, nf )|2.

(2)

Here, Oe denotes the optimization metric for training the
surrogate model.

2) Modeling in Fixed Frequency Conditions: During
the design and optimization process, in the fixed fre-
quency condition (from fmin to fmax with nf points)
that Fe(·) is trained on, Fe(·) can predict EM responses
for new input geometric parameters Pnew, denoted as
S∗
new(fmin, fmax, nf ). S∗

new(fmin, fmax, nf ) is denormalized
from S∗

new(fmin, fmax, nf ), which is obtained by

S∗
new(fmin, fmax, nf ) = Fe(Pnew). (3)

The modeling error (Le) is calculated by

Le =
1

nf
|S∗

new(fmin, fmax, nf )− Snew(fmin, fmax, nf )|2

=
1

nf

nf∑
x=1

|S∗
new(fx)− Snew(fx)|2, (4)

where x ∈ {1, 2, · · · , nf} and fx ∈ {fmin, · · · , fmax}︸ ︷︷ ︸
nf points

.

3) Modeling in Unseen Frequency Conditions:
EM responses in unseen frequency conditions,
Snew(fumin, fumax, nuf ), cannot be directly predicted
through this surrogate model but only by combining with
the EM similarity laws. The EM similarity laws are derived

from the scaling properties of Maxwell’s equations. There are
three prerequisite conditions for the EM similarity laws: all
geometric parameters are scaled by a factor k; the frequency
points are scaled inversely by k; the material properties
(permittivity ε, permeability µ, conductivity σ) are frequency-
independent and keep unchanged. Under the prerequisite
conditions, the EM fields, scattering parameters, and phases
approximately remain the same at the proportionally increased
frequency points if proportionally decreasing the geometric
parameters,

S(fmin, fmax, nf ) ≈ S(m · fmin,m · fmax, nf ),(5)
S(fmin, fmax, nf ) ← Simulate(P), (6)

S(m · fmin,m · fmax, nf ) ← Simulate(
1

m
· P). (7)

With assumptions of fumin = m · fmin, fumax = m · fmax,
nuf = nf , and the nuf frequency points being proportional
to the nf counterparts, Snew(fumin, fumax, nuf ) can be ex-
pressed as

Snew(fumin, fumax, nuf ) = S(m · fmin,m · fmax, nf )

≈ S(fmin, fmax, nf ). (8)

Thus, S∗
new(fumin, fumax, nuf ) can be predicted by combin-

ing the surrogate model with a proportioning process,

S∗
new(fumin, fumax, nuf ) ≈ S(fmin, fmax, nf )

= Fe(P
′

unew), (9)

P′

unew = normalize(m · Punew). (10)

Although modeling unseen frequency conditions is possible
using the EM similarity laws, this approach suffers from
low flexibility, high complexity, and reduced accuracy. The
assumptions should hold to obtain S∗

new(fumin, fumax, nuf )
by combining the surrogate model with one proportion-
ing process, showing low flexibility. Otherwise, multi-
ple proportioning processes are required to make up
S∗
new(fumin, fumax, nuf ), which significantly increases the

computational complexity. Detailed processes of both cases
will be presented in the implementations in Section III and IV.
As S(fmin, fmax, nf ) and S(m · fmin,m · fmax, nf ) are not
strictly equal, their complete relationship can be formulated
as,

S(m · fmin,m · fmax, nf ) = S(fmin, fmax, nf )±∆(m).

(11)

Here, ∆(m) represents the non-linear responses caused by
the proportioning impedance and radiation properties. ∆(m)
varies with respect to the proportioning scale m of the unseen
frequency conditions. As ∆(m) increases to be noticeable
(∆(m) ≫ ε, where ε is a minimum threshold), the gener-
ated S∗

new(fumin, fumax, nuf ) might deviate from the actual
Snew(fumin, fumax, nuf ). The modeling error (Leu) for un-
seen frequency conditions is calculated by

Leu =
1

nuf
|S∗

new(fumin, fumax, nuf )

−Snew(fumin, fumax, nuf )|2. (12)
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Replacing the right side of (12) with (9) and (11), Leu is
converted to

Leu =
1

nf
|S∗

new(fmin, fmax, nf )

−Snew(m · fmin,m · fmax, nf )|2

=
1

nf
|S∗

new(fmin, fmax, nf )

−[Snew(fmin, fmax, nf )±∆(m)]|2

=
1

nf

nf∑
x=1

|S∗
new(fx)− [Snew(fx)±∆(m)]|2, (13)

where x ∈ {1, 2, · · · , nf} and fx ∈ {fmin, · · · , fmax}︸ ︷︷ ︸
nf points

.

Compared with Le in (4), Leu reveals that the existing methods
suffer from deteriorated modeling accuracy for the unseen
frequency conditions.

4) Limited Generalizability and Scalability: Therefore, the
existing methods have limited generalizability and scalability:
the modeling for the unseen frequency conditions suffers
from low flexibility, high complexity, and low accuracy; their
working mechanism refrains them from being compatible with
variable frequency conditions.

B. Unified Frequency-Wise Modeling Framework

To be compatible with variable frequency conditions in
diverse real-world EM scenarios, a unified frequency-wise
EM modeling framework with improved generalizability and
scalability is proposed, as shown in Fig. 2(b).

1) Working Principle: The proposed unified frequency-
wise EM modeling framework can be expressed as,

S∗
n(fx) = Fp(Pn ·

fx
c0

). (14)

Here, n ∈ {1, 2, · · · , N}, x ∈ {1, 2, · · · , nf}. fx ∈
{fmin, · · · , fmax}︸ ︷︷ ︸

nf points

is an arbitrary frequency within the defined

frequency band. S∗(fx) denotes the predicted normalized EM
response value at fx, and S∗(fx) is the denormalized value.
Unlike existing methods that directly model between normal-
ized geometric parameters (P) and normalized EM responses
for fixed frequency range and points (S(fmin, fmax, nf )),
our frequency-wise modeling framework converts geometric
parameters Pn to electrical dimensions by

E(Pn, fx) = Pn ·
fx
c0

. (15)

Here, E(Pn, fx) represents the electrical dimensions of Pn

at fx. fx uses the unit of Hz, Pn uses mm, and the speed
of light in free space c0 uses mm/s. As Pn ≤ c0

fx
in most

cases, E(Pn, fx) falls between 0 and 1, requiring no further
normalization. Pn might contain both absolute and relative
geometric parameters. Absolute geometric parameters directly
determine the physical dimensions of EM structures, while
relative geometric parameters define specific physical dimen-
sions as a function of certain absolute geometric parameters.
The definition of relative geometric parameters simplifies the

adjustment of complex EM structures. The relative geomet-
ric parameters in Pn are converted to absolute geometric
parameters before being converted to electrical dimensions.
This process ensures the physical meaning of the converted
electrical dimensions.

2) Training Stage: In the training process, the model is
optimized by minimizing the difference between the predicted
and actual normalized EM responses at each frequency fx for
all the training data. Its optimization metric Op is expressed
as

Op = min
Fp(·)

1

N

N∑
n=1

1

nf

nf∑
x=1

|S∗
n(fx)− Sn(fx)|2

= min
Fp(·)

1

N

N∑
n=1

1

nf

nf∑
x=1

|Fp(Pn ·
fx
c0

)− Sn(fx)|2. (16)

3) Modeling Stage: During the design and optimization
process, the model can predict EM responses for any frequency
condition S∗

new(f(u)min, f(u)max, n(u)f ), which is the denor-
malized format of S∗

new(f(u)min, f(u)max, n(u)f ) generated by

S∗
new(f(u)min, f(u)max, n(u)f ) = {S∗(f(u)min),

· · · ,S∗(f(u)max)}, (17)

S∗(fnew) = Fp(Pnew ·
fnew
c0

), (18)

where fnew ∈ {f(u)min, · · · , f(u)max}.
The causality and passivity of the predicted EM responses

of the proposed surrogate model are maximized through the
following six aspects.

1) Data generation. The training data are sampled using
Hypercube Sampling to represent the geometric solving
space thoroughly and effectively. The EM responses of
these data samples are generated using high-fidelity full-
wave simulation to ensure data accuracy.

2) Activation function. Suitable activation functions are uti-
lized to confine the predicted values within reasonable
ranges. For example, as the EM responses are normalized
between 0 and 1 in Implementations A and B, Sigmoid
is utilized as the activation function for the output layer
to ensure the reasonability of the predictions.

3) Model architecture optimization. The model’s architec-
ture is thoroughly optimized using Bayesian optimization
to maximize its modeling accuracy, including the causal-
ity and passivity for unseen geometric parameters.

4) Model validation. A separate validation dataset is gener-
ated, which contains unseen geometric parameters. Along
with the training process, the model is validated on a
separate validation dataset to avoid overfitting, ensuring
the modeling accuracy for unseen geometric parameters.

5) Model testing. A separate testing dataset with unseen ge-
ometric parameters is generated. The well-trained model
is tested on this testing dataset to assess its accuracy for
unseen geometric parameters.

6) The final EM structure design is simulated via high-
fidelity full-wave simulation to validate its performance.
Fabrication and measurement can be carried out for
further validation if needed.
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C. Generalizability

The existing methods lack generalizability because they pri-
marily rely on the EM similarity laws to predict EM responses
for unseen frequency conditions. Noticeable deviations might
occur, because they ignore ∆(m) caused by the non-linear
proportioning characteristics of the impedance and radiation
properties. Our proposed modeling framework addresses this
limitation by embedding the EM similarity laws and enforc-
ing a robust understanding of the non-linear impedance and
radiation proportioning properties, thus enhancing the model’s
generalizability for unseen frequency conditions.

1) Joint Training: Let us consider two training samples at
two distinct frequency points, fx and fy , which originated
from the same set of geometric parameters (Pn) and the
corresponding EM responses. They can be expressed as

S∗
n(fx) = Fp(Pn ·

fx
c0

), (19)

S∗
n(fy) = Fp(Pn ·

fy
c0

), (20)

where fx < fy , fx, fy ∈ {fmin, · · · , fmax}. The proportion
between these two frequency points, denoted as m, is defined
by the ratio m =

fy
fx

, and m ranges within (1, fmax

fmin
].

Accordingly,

S∗
n(fy) = S∗

n(m · fx), (21)

Fp(Pn ·
fy
c0

) = Fp(Pn ·
m · fx
c0

)

= Fp(m · Pn ·
fx
c0

). (22)

Based on (11), we have

S∗
n(m · fx) = S∗

n(fx)±∆n(m). (23)

Replacing the right side of (21) with (23), we have

S∗
n(fy) = S∗

n(fx)±∆n(m). (24)

Replacing the left side component in (20) with (24) and
replacing its right side component with (22), the training step
in (20) is transformed to

S∗
n(fx)±∆(m) = Fp(m · Pn ·

fx
c0

). (25)

Considering joint training of (19) and (25), the optimization
metric of our approach is improved compared with Oe of

existing methods, which is equivalent to

Op = min
Fp(·)

1

N

N∑
n=1

1

nf − 1

nf−1∑
x=1

1

nf − x

nf−x∑
y>x

1

2

(|S∗
n(fx)− Sn(fx)|2 + |S∗

n(fy)− Sn(fy)|2)

= min
Fp(·)

1

N

N∑
n=1

1

nf − 1

nf−1∑
x=1

1

nf − x

nf−x∑
y>x

1

2

(|S∗
n(fx)− Sn(fx)|2

+|S∗
n(fx)±∆(m)− Sn(fy)|2)

= min
Fp(·)

1

N

N∑
n=1

1

nf − 1

nf−1∑
x=1

1

nf − x

nf−x∑
y>x

1

2

(|Fp(Pn ·
fx
c0

)− Sn(fx)|2

+|Fp(m · Pn ·
fx
c0

)− Sn(fy)|2). (26)

As expressed in (26), the optimization metric of our approach
integrates the propagation of ±∆(m) ← m (m ∈ (1, fmax

fmin
]).

The integration of ±∆(m)← m (m ∈ (1, fmax

fmin
]) enforces the

model to better understand the EM similarity laws and non-
linear proportioning characteristics caused by the impedance
and radiation properties, hence improving the extrapolation
modeling accuracy for unseen frequency ranges.

2) Improved Generalizability: In the design and optimiza-
tion stage, the model can predict EM responses for variable
frequency conditions (from f(u)min to f(u)max with nuf

points) by (17) and (18). Instead of a rough approximation
through the EM similarity laws, S∗(fnew) in (18) is directly
predicted by the model with a robust understanding of the EM
similarity laws and non-linear proportioning characteristics.
Due to its enhanced understanding of the non-linear propor-
tioning characteristics, the modeling error Lp(u) for variable
frequency conditions is expressed as

Lp(u) =
1

n(u)f
|S∗

new(f(u)min, f(u)max, n(u)f )

−Snew(f(u)min, f(u)max, n(u)f )|2

=
1

n(u)f

n(u)f∑
fnew

|S∗
new(fnew)− Snew(fnew)|2. (27)

Compared with Leu of existing methods in (9), the modeling
error for unseen frequency conditions Lpu is significantly
reduced, thereby greatly improving generalizability for vari-
able frequency conditions. Note that formula (27) does not
necessarily imply that the model error for unseen frequency
conditions Lpu is reduced to a level close to Lp for the
original frequency condition. In general, Lpu keeps greater
than Lp, because m for unseen frequency conditions probably
exceeds its original range (1, fmax

fmin
] that the model is trained

on. Nevertheless, (27) indicates that the proposed method
greatly enhances the modeling accuracy for unseen frequency
conditions.
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D. Scalability

Real-world applications now encompass increasingly di-
verse frequency conditions, necessitating enhanced scalability
of the modeling framework. The existing methods require
a distinct surrogate model for the specific frequency range
and points of interest. Once trained on data from a certain
frequency condition ranging from fαmin to fαmax with nαf

points, the surrogate model is not scalable to incorporate data
from a new frequency range ranging from fβmin to fβmax

with nβf points, when fαmin ̸= fβmin, fαmax ̸= fβmax,
and nαf ̸= nβf . Some works sample multiple frequency
ranges and include frequency as one of the inputs, achieving
interpolation modeling along the frequency domain. However,
they require complete EM responses of multiple frequency
ranges for each data sample, which could be difficult to obtain
in real-world scenarios. The frequency conditions are diverse
in real-world scenarios. Different data samples could have
different frequency ranges, and some data samples might lack
EM responses at certain frequency ranges.

The unified frequency-wise modeling framework resolves
this problem by enabling the integration of variable frequency
conditions into a single model,

S∗(fα,··· ,β) = Fp(Pα,··· ,β ·
fα,··· ,β
c0

),

fαx ∈ {fαmin, · · · , fαmax}︸ ︷︷ ︸
nαf points

,

fβx ∈ {fβmin, · · · , fβmax}︸ ︷︷ ︸
nβf points

. (28)

Here, “α, · · · , β” represent indexes for variable frequency
conditions, from which α and β index two arbitrary ones.
Assuming that fαmin < fαmax < fβmin < fβmax, the
sampling region of the proportioning ratio is expanded from
(1, fαmax

fαmin
] to (1,

fβmax

fαmin
] by fβmax−fαmax

fαmin
. With additional

frequency conditions involved, the sampling region of the
proportioning ratio m continuously grows. By sampling m
from a progressively expanded region, the surrogate model
achieves a more robust understanding of the EM similarity
laws and imperfect proportioning properties, showing im-
proved scalability.

III. IMPLEMENTATION A: MEANDER-LINE POLARIZER

A. Meander-Line Polarizer

Implementation A involves modeling the co-polarization
transmission coefficient |S21| of a meander-line polarizer. Its
unit cell is composed of two crossed meander microstrip lines
that are etched on a dielectric substrate with a thickness
of h0 = 0.254mm and relative permittivity of εr = 2.2,
as illustrated in Fig. 3. The microstrip lines of every two
adjacent unit cells along the x direction connect and form a
closed loop. This polarizer converts an incident wave, linearly
polarized at 45 ◦ along the z direction, into a circularly-
polarized signal. The co-polarization transmission coefficient
|S21| indicates its polarization conversion performance. |S21|
is mainly controlled by five geometric parameters, L, W , a,
d, and s. Here, a is a relative parameter that denotes the ratio

h0

W

(a) (b)

xy

z

xy

z

x

y

z x

y

z

L

W

L

d

0.5W

a·0.5W

s

Fig. 3. Unit cell of the meander-line polarizer in Implementation A. (a) 3D
view. (b) Top view.

TABLE I
TWO DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING

GEOMETRIC PARAMETERS IN IMPLEMENTATION A: MEANDER-LINE
POLARIZER

Condition
A1 A2

Frequency Range (GHz) [10, 25] [20, 40]
Points 61 81

Geometric
Parameters
(Unit: mm;
∗Unit: 1)

L [3.6, 4.7] [1.8, 2.4]
W [1.7, 2.6] [0.85, 1.55]
∗a [0.3, 0.45] [0.3, 0.45]
d [1.5, 2.4] [0.7, 1.3]
s [0.2, 0.45] [0.05, 0.2]

of folded length along the x axis, as shown in Fig. 3. The
definition of a prevents the folded length from exceeding half
the width of the unit cell 0.5W during sampling.

B. Data Preparation

Two frequency conditions are defined: A1 from 10GHz
to 25GHz at an interval of 0.25GHz with 61 points; A2
from 20GHz to 40GHz at an interval of 0.25GHz with 81
points. As shown in Table I, a distinct parameter range is
assigned for the five geometric parameters in each condition
based on the design experience. Under each condition, 100
combinations of geometric parameters are sampled using Latin
Hypercube Sampling, and the corresponding 100 |S21| are
generated through full-wave simulation. The respective sizes
of |S21| in A1 and A2 are 61 and 81, respectively. In each
condition, the collected 100 pairs of geometric parameters
and |S21| are arbitrarily divided into training, validation, and
testing datasets in the ratio of 2 : 1 : 2 under a random seed:
DA1

train, DA1
val, and DA1

test in A1; DA2
train, DA2

val, and DA2
test in A2,

respectively. These datasets undergo different modifications in
the existing and proposed methods. Thus, each dataset has a
different size in the existing and proposed methods, but its
encapsulated information remains unchanged.

C. Existing Methods

For comparison, we apply four existing methods, Gaus-
sian process regression (Ag

1 and Ag
2), kriging (Ak

1 and Ak
2),

support vector regression (As
1 and As

2), and neural networks
(An

1 and An
2 ), for modeling the meander-line polarizer in

the two conditions, A1 and A2, respectively, as listed in
Table II. It is difficult for the existing methods to train an
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integrated model incorporating A1 and A2 data samples,
because each condition’s data samples have distinct frequency
ranges and the existing methods require identical frequency
ranges. Each experiment is carried out in three independent
runs under three random seeds. In each run, the source data
are arbitrarily divided into datasets under a distinct random
seed, and the experiments are conducted accordingly. During
these experiments, the datasets are normalized between 0 and
1. The geometric parameters are normalized by subtracting
the minimum values and dividing by the range between the
maximum and minimum values. For example, L is normalized
through L−min(L)

max(L)−min(L) =
L−3.6mm

4.7mm−3.6mm in Ag,k,s,n
1 . Here, the

relative geometric parameter a and other absolute geometric
parameters are normalized using this min-max scaling to fall
within the 0 to 1 range. We convert the |S21| values from
decibel (dB) format to linear format (values between 0 and
1). Under each condition, the 100 samples are separated
arbitrarily to form training, validation, and testing datasets
with sizes of 40, 20, and 40, respectively. Each sample has
a fixed input size of 5. The output size is 61 in A1 and
81 in A2. During the training process in Ag,k,s,n

1 , DA1
train is

utilized for training a surrogate model, and DA1
val is used for

validation. In Ag,k,s,n
2 , DA2

train and DA2
val are used for training

and validation, respectively. We use the Adam optimizer and
the mean squared error (MSE) between actual and predicted
|S21| linear values as the loss function.

Gaussian process regression employs a combination of
constant kernel and radial basis functions as its kernel function.
Support vector regression uses a linear kernel. Neural networks
use Sigmoid as the activation function for the output layer
and ReLU for the other layers. Each neural network model’s
hyperparameters are optimized using Bayesian optimization,
including the number of epochs, the learning rate, the batch
size, the number of hidden layers, and the number of neurons
in each hidden layer. The number of training epochs is
determined by a quantized uniform distribution ranging from
200 to 1000, with intervals of 200. The learning rate is selected
from a discrete set of values, [0.0001, 0.001]. The batch size
is sampled from a quantized uniform distribution between 1
and 10, with increments of 1. The number of hidden layers is
sampled from a quantized uniform distribution between 2 and
8. The number of neurons per hidden layer is chosen from the
set [16, 32, 64, 128, 256]. The optimization process stops
either after 50 consecutive iterations with no improvement
or when it reaches 200 iterations. The validation loss from
DA1

val serves as the assessment metric in An
1 , and DA2

val in
An

2 , respectively. The optimized hyperparameters for the two
neural network models are outlined in Table II. The number of
gradient steps determined by the number of epochs and batch
size is also shown in Table II.

Each of the eight well-trained models is tested on both
DA1

test and DA2
test to assess its accuracy for the original and

unseen frequency conditions. The test results are listed in
Table II. Note that each loss value is the average result of three
independent runs. To test a model’s interpolation accuracy in
its original frequency condition, testing on DA1

test in Ag,k,s,n
1

or testing DA2
test in Ag,k,s,n

2 , respectively, we directly input the

geometric parameters to predict the |S21| values. As for testing
the extrapolation or extension ability in unseen frequency
conditions, testing on DA2

test in Ag,k,s,n
1 or testing on DA1

test in
Ag,k,s,n

2 , respectively, the surrogate model is combined with
the EM similarity laws for prediction. The EM similarity laws
reveal that an EM structure with 1

m times proportioned geo-
metric size maintains similar performance at m times higher
frequency. It may require multiple proportioning processes to
cover a wide target frequency range.

To describe the testing procedure for the original and
unseen frequency conditions, Fg,k,s,n

Ai (·) represents the model
trained in Ag,k,s,n

i . Pj represents the geometric param-
eters in DAj

test, and Pj denotes the normalized parame-
ters. S∗

j (f(u)min, f(u)max, n(u)f ) denotes the predicted nor-
malized |S21| from f(u)min to f(u)max with n(u)f points.
Sj(f(u)min, f(u)max, n(u)f ) is the actual normalized |S21|.
LAij is the test loss of Fg,k,s,n

Ai (·) on DAj
test, where i, j ∈

{1, 2}. The detailed testing procedure is introduced below.

(a) LA11 of Fg,k,s,n
A1 (·) on DA1

test in Ag,k,s,n
1 . S∗

1(10, 25, 61) is
predicted by feeding P1 into Fg,k,s,n

A1 (·) to calculate the
MSE between S1(10, 25, 61),

LA11 =
1

61
|S1(10, 25, 61)− S∗

1(10, 25, 61)|2, (29)

where

S∗
1(10, 25, 61) = Fg,k,s,n

A1 (P1). (30)

(b) LA12 of Fg,k,s,n
A1 (·) on DA2

test in Ag,k,s,n
1 . P2 is increased

by m =
fA2
min

fA1
min

= 20
10 times and normalized with respect

to the parameter range in A1. The normalized 20
10 · P2 is

input into Fg,k,s,n
A1 (·) to predict S∗

2(10 × 20
10 = 20, 25 ×

20
10 = 50, 61),

S∗
2(20, 50, 61) = S∗

2(10×
20

10
, 25× 20

10
, 61),

= Fg,k,s,n
A1 (

20

10
· P2). (31)

The last 20 |S21| values corresponding to frequencies
above 40GHz are cut off to fit the target frequency range
in the testing condition A2 from 20GHz to 40GHz,

S∗
2(20, 40, 41) = S∗

2(20, 50, 61)[:, : −20]. (32)

S2(20, 40, 41) is collected via simulation as label,

S2(20, 40, 41) ← Simulate(P2). (33)

LA12 equals the MSE between S2(20, 40, 41) and
S∗
2(20, 40, 41),

LA12 =
1

41
|S2(20, 40, 41)− S∗

2(20, 40, 41)|2. (34)

(c) LA21 of Fg,k,s,n
A2 (·) on DA1

test in Ag,k,s,n
2 . Two propor-

tioning processes are conducted to cover the target fre-
quency range in the testing condition A1 from 10GHz

to 25GHz. Specifically, we input 10
20 · P1 and 25

40 · P1 into
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Fg,k,s,n
A2 (·) to predict S∗

1(20× 10
20 = 10, 40× 10

20 = 20, 81)

and S∗
1(20× 25

40 = 12.5, 40× 25
40 = 25, 81), respectively,

S∗
1(10, 20, 81) = S∗

1(20×
10

20
, 40× 10

20
, 81)

= Fg,k,s,n
A2 (

10

20
· P1), (35)

S∗
1(12.5, 25, 81) = S∗

1(20×
25

40
, 40× 25

40
, 81)

= Fg,k,s,n
A2 (

25

40
· P1). (36)

The last 32 points of S∗
1(12.5, 25, 81) from 20GHz to

25GHz are extracted, excluding the point at 20GHz. The
extracted values are concatenated with S∗

1(10, 20, 81) to
generate S∗

1(10, 25, 113),

S∗
1(20, 25, 32) = S∗

1(12.5, 25, 81)[:,−32 :], (37)

S∗
1(10, 25, 113) = {S

∗
1(10, 20, 81),S∗

1(20, 25, 32)}.
(38)

We collect the label S1(10, 25, 113) through full-wave
simulation,

S1(10, 25, 113) ← Simulate(P1). (39)

LA21 equals the MSE between S1(10, 25, 113) and
S∗
1(10, 25, 113),

LA21 =
1

113
|S1(10, 25, 113)− S∗

1(10, 25, 113)|2.
(40)

(d) LA22 of Fg,k,s,n
A2 (·) on DA2

test in Ag,k,s,n
2 ,

LA22 =
1

81
|S2(20, 40, 81)− S∗

2(20, 40, 81)|2, (41)

where

S∗
2(20, 40, 81) = Fg,k,s,n

A2 (P2). (42)

Although we can generate |S21| within the unseen fre-
quency ranges through the EM similarity laws, it suffers from
low flexibility, high complexity, and reduced accuracy. The
available frequency points are constrained to be proportional
to those in the training condition. Multiple proportioning
procedures are needed to make up a wide target frequency
range. The surrogate model has limited performance within
the unseen frequency ranges, as shown in Table II, because it
lacks robustness against the non-linear characteristics of the
proportioning impedance and radiation properties.

D. Proposed Method

The proposed method is validated through multiple ex-
periments. Each experiment is repeated in three independent
runs under the three random seeds, which are the same as
those used in the existing methods. We reformat and con-
vert the source datasets to be frequency-wise. The geometric
parameters Pn are transformed into the electrical dimensions
En(Pn, fx) using (15). The relative geometric parameter a
in Pn is converted to an absolute geometric parameter by

multiplying it by 0.5W before calculating its electrical dimen-
sion. The geometric parameters are within a wavelength of the
operating frequency. Thus, the converted electrical dimensions
approximately range between 0 and 1. Each En(Pn, fx) is
paired with the corresponding |S21|n at fx to form a new
frequency-wise sample. In Ap

1, as |S21|n contains 61 frequency
points in A1, each pair of Pn and |S21|n is converted into
61 pairs of frequency-wise samples. The reformatted size of
the generated frequency-wise training, validation, and testing
dataset in A1 is 40 × 61 = 2440, 20 × 61 = 1220, and
40 × 61 = 2440, respectively. In Ap

2, each pair of Pn and
|S21|n is converted into 81 pairs of samples, forming training,
validation, and testing datasets of sizes 3240, 1620, and 3240,
respectively. For both Ap

1 and Ap
2, each sample has a fixed

input size of 5 and output size of 1.
1) Generalizability: To compare with the existing methods,

the proposed method is separately conducted in each condition
A1 or A2 for validating generalizability, referred to as exper-
iments Ap

1 and Ap
2, respectively, as shown in Table II. Ap

1 is
compared with Ag,k,s,n

1 to validate the generalizability of the
proposed method, including the interpolation and extrapolation
ability. Correspondingly, Ap

2 is compared with Ag,k,s,n
2 for

validation. In Ap
1, the model is solely trained on A1 using

the specified training dataset DA1
train, and it is validated on

DA1
val. In Ap

2, the model is solely trained and validated on
A2 using DA2

train and DA2
val, respectively. We optimize the

hyperparameters of these models using Bayesian optimization.
For a fair comparison, the learning rate, the number of hidden
layers, and the number of neurons in every hidden layer are
sampled from the same space, and the activation function
remains unchanged as those for neural networks in Section
III-C. In response to the increase in dataset size by the number
of frequency points 61 or 81, the sampling range of the number
of epochs was modified, ranging from 500 to 2000, with
intervals of 500; the optimization space for the batch size is
proportionally extended, sampling from 1 × nf to 10 × nf

with increments of nf , where nf = 61 in Ap
1 and nf = 81 in

Ap
2, respectively. The validation loss on DA1

val is taken as the
optimization metric in Ap

1, and DA2
val in Ap

2, respectively. The
optimization process is designed to end after 50 iterations if no
improvement occurs or at the 200th iteration. The optimized
hyperparameters are given in Table II.

After training, each model is tested on both DA1
test and DA2

test

to assess its accuracy for the original and unseen frequency
conditions. For the model that trained on DA1

train in Ap
1, testing

on DA1
test measures its interpolation accuracy for its original

frequency condition A1, and testing on DA2
test evaluates its

extrapolation accuracy for an unseen frequency condition A2.
The testing results are compared with existing methods in
Table II.

Compared with neural networks that reach the best model-
ing performance, the proposed model trained in Ap

1 enhances
the modeling accuracy on DA2

test for the unseen frequency
range by 10.6% ( |4.65−5.20|

5.20 × 100% = 10.6%). Although its
modeling error on DA1

test for the original frequency condition
increases, it remains a small value and is significantly lower
than the modeling error on DA2

test. The model trained in Ap
2

improves the modeling accuracy on DA1
test for the unseen
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TABLE II
COMPARATIVE RESULTS IN IMPLEMENTATION A: MEANDER-LINE POLARIZER

Exp. Trained Model Optimized Hyperparameters Test Loss (×10−4) on
on Ne Ng lr Nb Nh [Nn1, Nn2, · · · ] DA1

test DA2
test

Ag
1

DA1
train

GPR − 0.34 5.40
Ak

1 Kri. − 0.23 9.43
As

1 SVR − 19.17 31.46
An

1 NN 1000 6000 0.0001 7 3 [256, 256, 32] 0.34 5.20
Ap

1 Pro. 1500 60000 0.001 61 6 [256, 128, 16, 32, 32, 256] 0.56 4.65
Ag

2

DA2
train

GPR − 175.93 0.68
Ak

2 Kri. − 14.81 0.53
As

2 SVR − 31.67 19.84
An

2 NN 800 8000 0.001 4 5 [32, 256, 32, 16, 16] 7.92 0.76
Ap

2 Pro. 1000 40000 0.001 81 2 [64, 128] 5.72 0.34

Ap
12

DA1
train
&

DA2
train

Pro. 1500 43500 0.001 200 2 [256, 32] 2.04 1.60

Note: Exp. refers to the experiment index; GPR refers to Gaussian process regression;
Kri. refers to kriging; SVR refers to support vector regression;
NN refers to neural networks; Pro. refers to the proposed method;
Ne refers to the number of epochs; Ng refers to the number of gradient steps;
lr refers to the learning rate; Nb refers to the batch size;
Nh refers to the number of hidden layers; [Nn1, Nn2, · · · ] refers to the number of neurons in each hidden layer.
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Fig. 4. Comparison of |S21| curves in Implementation A. (a) A test sample
in DA1

test for An
1 , An

2 , Ap
1 , Ap

2 , and Ap
12. (b) A test sample in DA2

test for
An

1 , An
2 , Ap

1 , Ap
2 , and Ap

12. (“Label” denotes the label |S21| generated from
full-wave simulation.)

frequency condition by 27.8% ( |5.72−7.92|
7.92 ×100% = 27.8%),

while maintaining its performance on DA2
test in the original

condition. The results in Ap
1 and Ap

2 demonstrate the enhance-
ment of extrapolated modeling performance compared with
the existing methods, indicating the improved generalizability
of the proposed method.

2) Scalability: A surrogate model is jointly trained using
both DA1

train and DA2
train to validate its scalability, referred to

as an experiment Ap
12 in Table II. The model is optimized

using Bayesian optimization under the same sampling space
as in Section III-D1, except that the batch size is chosen from
a discrete set of values, [100, 200, 500, 1000, 1500, 2000].
Table II shows the optimized model and testing results.

The model in Ap
12 can be considered as scaling up the

model in Ap
1 by incorporating new data DA2

train in a new
condition A2, or scaling up Ap

2 by adding DA1
train, respectively.

It greatly improves and balances the modeling accuracy across
two different frequency conditions A1 and A2. Although the
modeling error in the original frequency condition slightly
increases, it is still significantly lower than the maximum

modeling error before scaling. To better visualize the im-
provement, Fig. 4 compares the |S21| curves generated by
neural networks (An

1 and An
2 ) and the proposed method (Ap

1,
Ap

2, and Ap
12). Simulation results generated from full-wave

simulators are used as the ground truth, represented as black
curves and denoted as “Label”. Seeing An

1 and Ap
1 denoted

as blue curves with hollow and solid down-triangle-shaped
marks, respectively, the proposed method shows better ex-
trapolation performance along out-of-range frequency A2 than
neural networks, while the modeling accuracy in A1 slightly
deteriorates. The proposed method reaches the best modeling
performance in Ap

12, which is denoted as red curves with star-
shaped marks, matching well with full-wave simulation results.
The comparative results demonstrate the improved scalability
of the proposed method to incorporate variable frequency
conditions.

IV. IMPLEMENTATION B: PLANAR METASURFACE LENS
MODELING

We further validate the improved generalizability and scala-
bility of the proposed method by implementing it on a planar
metasurface lens, when the solving dimensionality increases
from five to ten and three different frequency conditions are
considered.

A. Planar Metasurface Lens

Implementation B aims to model the reflection coefficient
|S11| of a planar metasurface lens for millimeter-wave MIMO
applications presented in [38]. Its unit cell structure is il-
lustrated in Fig. 5. It consists of two back-to-back h0 =
0.254mm thick Rogers RT5880 substrate layers with relative
permittivity of εr = 2.2. These two substrate layers are
separated by a h thick air gap layer. Two identical curved
Jerusalem crosses are etched on the outer layers of the two
substrate layers, which are depicted in Fig. 5. 10 geometric
parameters, r1, r2, w, w1, w2, c, g1, g, p, and h, are adjusted to
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Fig. 5. Unit cell of the planar metasurface lens in Implementation B. (a) 3D
view. (b) Top and bottom metal layers.

modify the |S11|. c is a relative geometric parameter associated
with the folded length of the outer arm. Including c as a design
parameter prevents the outer and inner arms from overlapping
during the exploration of the solution space.

B. Data Preparation

We define three conditions (B1, B2, and B3) with differ-
ent frequency ranges and points, as listed in Table III. For
example, in B1, the planar metasurface lens operates from
15GHz to 35GHz, and the modeling focuses on |S11| at
nf = 81 frequency points with an interval of 0.25GHz. Each
frequency condition is associated with a distinct adjustable
space for the geometric parameters. For each condition, we
collect 150 pairs of geometric parameters and |S11| to form
training, validation, and testing datasets. The 150 combinations
of geometric parameters are defined using Latin Hypercube
Sampling within the specific adjustable space. Note that p
and h are set as constant values in each condition during
sampling, but they are included as the input for modeling
across different conditions. Correspondingly, 150 |S11| vectors
of size nf within respective frequency ranges are generated
using full-wave simulation. In a ratio of 7 : 3 : 5, we form
training, validation, and testing datasets in each condition
under a random seed: DB1

train, DB1
val, and DB1

test for B1; DB2
train,

DB2
val, and DB2

test for B2; DB3
train, DB3

val, and DB3
test for B3, re-

spectively. The division ratio for datasets differs slightly from
that of Implementation A: Meander-Line Polarizer, because the
total amount of data is different. The ratio between training
and validation remains similar 2

1 ≈
7
3 , and a relatively large

amount of testing data is arranged for consistency.

C. Existing Methods

Gaussian process regression (Bg
1 , Bg

2 , and Bg
3 ), kriging (Bk

1 ,
Bk

2 , and Bk
3 ), support vector regression (Bs

1 , Bs
2 , and Bs

3), and
neural networks (Bn

1 , Bn
2 , and Bn

3 ) are applied for modeling
in the three frequency conditions, referred to as twelve ex-
periments in Table IV. The existing methods require identical
frequency ranges, hence refraining an integrated model from
being trained with all the B1, B2, and B3 data samples.
Each experiment is repeated in three independent runs under
three random seeds, respectively, to yield an average result
for consistency. We normalize the geometric parameters by
subtracting the minimum values and dividing by the range
between the maximum and minimum values. For example,

TABLE III
THREE DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING

GEOMETRIC PARAMETERS IN IMPLEMENTATION B: PLANAR
METASURFACE LENS

Condition
B1 B2 B3

Frequency
Range
(GHz) [15, 35] [20, 45] [30, 60]

Points 81 101 121

Geometric
Parameters
(Unit: mm;
∗Unit: 1)

r1 [2.1, 2.7] [1.35, 1.75] [0.9, 1.2]
r2 [1.1, 1.7] [0.5, 0.9] [0.45, 0.75]
w [0.1, 0.35] [0.05, 0.2] [0.05, 0.15]
w1 [0.1, 0.35] [0.05, 0.2] [0.05, 0.15]
w2 [0.1, 0.35] [0.05, 0.2] [0.05, 0.15]
∗c [0.4, 0.8] [0.4, 0.8] [0.4, 0.8]
g1 [0.4, 0.8] [0.2, 0.6] [0.2, 0.4]
g [0.6, 1.2] [0.4, 0.8] [0.2, 0.5]
p 6.2 4 2.8
h 1.0 0.8 0.6

r1 is normalized by r1−min(r1)
max(r1)−min(r1)

= r1−2.1mm
2.7mm−2.1mm in

Bg,k,s,n
1 . |S11| values are converted from decibel (dB) format

to linear format between 0 and 1. In each condition, by
separating the 150 samples arbitrarily under a random seed,
we form training, validation, and testing datasets of size 70,
30, and 50. In each condition B1, B2, or B3, each sample
has an input size of 10 and an output size of 81, 101, or
121, respectively. During the training process in Bg,k,s,n

1 ,
DB1

train is utilized to train a surrogate model, while DB1
val is

used for validation. Accordingly, Bg,k,s,n
2 and Bg,k,s,n

3 use
their corresponding datasets, respectively. The loss function is
defined as the mean squared error (MSE) between actual and
predicted |S11| linear values.

The kernel and activation functions for these existing
methods are the same as those used in Implementation A:
Meander-Line Polarizer. Each neural network’s architecture
is thoroughly optimized through Bayesian optimization. The
key hyperparameters under exploration include the number of
training epochs, the learning rate, the batch size, the number
of hidden layers, and the number of neurons. Specifically,
the number of training epochs is sampled from a quantized
uniform distribution from 200 to 1000, with intervals of
200. The learning rate is optimized using a discrete set of
values, [0.0001, 0.001]. The batch size is sampled from
a quantized uniform distribution between 1 and 10, with
increments of 1. The number of hidden layers is sampled
from a quantized uniform distribution between 2 and 8. The
number of neurons in each hidden layer is chosen from the
set [16, 32, 64, 128, 256]. Adam is taken as the optimizer.
The optimization is terminated after 50 iterations without
improvement or upon reaching the maximum number of
iterations, 300. The validation loss on the respective validation
dataset serves as the assessment metric in Bn

1 , Bn
2 , or Bn

3 ,
respectively. The optimized architectures of the three neural
networks are listed in Table IV.

Once trained, each of the twelve models is tested on DB1
test,

DB2
test, and DB3

test to evaluate its accuracy and generalizability.
The average test losses are listed in Table IV. For each
model, testing the interpolation ability in its original frequency
condition is straightforward, for example, testing the model in
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Bg,k,s,n
1 on DB1

test. We test the model’s extrapolation ability
under its unseen frequency conditions by combining the EM
similarity laws, for example, testing the model in Bg,k,s,n

1

on DB2
test and DB3

test. For clarity, we define the model in
Bg,k,s,n

i as Fg,k,s,n
Bi (·), the denormalized geometric parameters

in Bj as Pj , the normalized parameters as Pj , the label
normalized |S11| from f(u)min to f(u)max with n(u)f points
as Sj(f(u)min, f(u)max, n(u)f ), the predicted normalized |S11|
as S∗

j (f(u)min, f(u)max, n(u)f ), and the test loss of Fg,k,s,n
Bi (·)

on DBj
test as LBij . Here, i, j ∈ {1, 2, 3} denotes the index

related to three conditions, B1, B2, and B3. We test each
model under the following guidelines.
(a) LB11 of Fg,k,s,n

B1 (·) on DB1
test in Bg,k,s,n

1 . We directly in-
put P1 into Fg,k,s,n

B1 (·) to predict S∗
1(15, 35, 81) and calcu-

late the MSE between S1(15, 35, 81) and S∗
1(15, 35, 81),

LB11 =
1

81
|S1(15, 35, 81)− S∗

1(15, 35, 81)|2, (43)

where

S∗
1(15, 35, 81) = Fg,k,s,n

B1 (P1). (44)

(b) LB12 of Fg,k,s,n
B1 (·) on DB2

test in Bg,k,s,n
1 . We proportion-

ally increase P2 by m =
fB2
min

fB1
min

= 20
15 times, normalize

it within the parameter region in B1, and input 20
15 · P2

into Fg,k,s,n
B1 (·) to predict S∗

2(15 × 20
15 = 20, 35 × 20

15 ≈
46.7, 81),

S∗
2(20, 46.7, 81) = S∗

2(15×
20

15
, 35× 20

15
, 81)

= Fg,k,s,n
B1 (

20

15
· P2). (45)

As the target frequency range in the testing condition B2
is from 20GHz to 45GHz, the last 5 |S11| values out of
this range are cut off,

S∗
2(20, 45, 76) = S∗

2(20, 46.7, 81)[:, : −5]. (46)

Due to the misalignment of the existing S2(20, 45, 101),
we simulate and collect label S2(20, 45, 76),

S2(20, 45, 76) ← Simulate(P2). (47)

LB12 equals the MSE between S2(20, 45, 76) and
S∗
2(20, 45, 76),

LB12 =
1

76
|S2(20, 45, 76)− S∗

2(20, 45, 76)|2. (48)

(c) LB13 of Fg,k,s,n
B1 (·) on DB3

test in Bg,k,s,n
1 . P3 is enlarged

by m =
fB3
min

fB1
min

= 30
15 times, normalized, and input into

Fg,k,s,n
B1 (·) to predict S∗

3(15× 30
15 = 30, 35× 30

15 = 70, 81),

S∗
3(30, 70, 81) = S∗

3(15×
30

15
, 35× 30

15
, 81)

= Fg,k,s,n
B1 (

30

15
· P3). (49)

The last 20 |S11| values out over the maximum frequency
of interest in the testing condition B3, 60GHz, is cut off,

S∗
3(30, 60, 61) = S∗

3(30, 70, 81)[:, : −20]. (50)

The label S3(30, 60, 61) is acquired through full-wave
simulation,

S3(30, 60, 61) ← Simulate(P3). (51)

LB13 is obtained by calculating the MSE between
S3(30, 60, 61) and S∗

3(30, 60, 61),

LB13 =
1

61
|S3(30, 60, 61)− S∗

3(30, 60, 61)|2. (52)

(d) LB21 of Fg,k,s,n
B2 (·) on DB1

test in Bg,k,s,n
2 . To make up

the target frequency range in the testing condition B1

from 15GHz to 35GHz, we input 15
20 · P1 and 35

45 · P1

into Fg,k,s,n
B2 (·) to predict S∗

1(20 × 15
20 = 15, 45 × 15

20 =

33.75, 101) and S∗
1(20× 35

45 ≈ 15.6, 45× 35
45 = 35, 101),

respectively,

S∗
1(15, 33.75, 101) = S∗

1(20×
15

20
, 45× 15

20
, 101)

= Fg,k,s,n
B2 (

15

20
· P1), (53)

S∗
1(15.6, 35, 101) = S∗

1(20×
35

45
, 45× 35

45
, 101)

= Fg,k,s,n
B2 (

35

45
· P1). (54)

The last 7 points of S∗
1(15.6, 35, 101) within 33.75GHz

to 35GHz are extracted and concatenated with
S∗
1(15, 33.75, 101) to obtain S∗

1(15, 35, 108),

S∗
1(33.75, 35, 7) = S∗

1(15.6, 35, 101)[:,−7 :], (55)

S∗
1(15, 35, 108) = {S

∗
1(15, 33.75, 101),S∗

1(33.75, 35, 7)}.
(56)

We collect the label S1(15, 35, 108) through full-wave
simulation,

S1(15, 35, 108) ← Simulate(P1). (57)

LB21 equals the MSE between S1(15, 35, 108) and
S∗
1(15, 35, 108),

LB21 =
1

108
|S1(15, 35, 108)− S∗

1(15, 35, 108)|2.
(58)

(e) LB22 of Fg,k,s,n
B2 (·) on DB2

test in Bg,k,s,n
2 ,

LB22 =
1

101
|S2(20, 45, 101)− S∗

2(20, 45, 101)|2,
(59)

where

S∗
2(20, 45, 101) = Fg,k,s,n

B2 (P2). (60)

(f) LB23 of Fg,k,s,n
B2 (·) on DB3

test in Bg,k,s,n
2 . We input 30

20 · P3

into Fg,k,s,n
B2 (·) to predict S∗

3(20 × 30
20 = 30, 45 × 30

20 =
67.5, 101),

S∗
3(30, 67.5, 101) = S∗

3(20×
30

20
, 45× 30

20
, 101)

= Fg,k,s,n
B2 (

30

20
· P3). (61)
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We cut off the last 20 points of S∗
3(30, 67.5, 101) over

the desired maximum frequency 60GHz in the testing
condition B3 to form S∗

3(30, 60, 81),

S∗
3(30, 60, 81) = S∗

3(30, 67.5, 101)[:, : −20]. (62)

The label S3(30, 60, 81) is acquired through full-wave
simulation,

S3(30, 60, 81) ← Simulate(P3). (63)

LB23 equals the MSE between S3(30, 60, 81) and
S∗
3(30, 60, 81),

LB23 =
1

81
|S3(30, 60, 81)− S∗

3(30, 60, 81)|2. (64)

(g) LB31 of Fg,k,s,n
B3 (·) on DB1

test in Bg,k,s,n
3 . To cover the

frequency range of interest in the testing condition B1

from 15GHz to 35GHz, we input 15
30 · P1 and 35

60 · P1 into
Fg,k,s,n
B3 (·) to predict S∗

1(30× 15
30 = 15, 60× 15

30 = 30, 121)

and S∗
1(30× 35

60 = 17.5, 60× 35
60 = 35, 121), respectively,

S∗
1(15, 30, 121) = S∗

1(30×
15

30
, 60× 15

30
, 121)

= Fg,k,s,n
B3 (

15

30
· P1), (65)

S∗
1(17.5, 35, 121) = S∗

1(30×
35

60
, 60× 35

60
, 121)

= Fg,k,s,n
B3 (

35

60
· P1). (66)

We concatenate S∗
1(15, 30, 121) and the last 34 points

of S∗
1(17.5, 35, 121) within 30GHz to 35GHz to form

S∗
1(15, 35, 155),

S∗
1(30, 35, 34) = S∗

1(17.5, 35, 121)[:,−34 :], (67)

S∗
1(15, 35, 155) = {S

∗
1(15, 30, 121),S∗

1(30, 35, 34)}.
(68)

We collect the label S1(15, 35, 155) through full-wave
simulation,

S1(15, 35, 155) ← Simulate(P1). (69)

LB31 equals the MSE between S1(15, 35, 155) and
S∗
1(15, 35, 155),

LB31 =
1

155
|S1(15, 35, 155)− S∗

1(15, 35, 155)|2.
(70)

(h) LB32 of Fg,k,s,n
B3 (·) on DB2

test in Bg,k,s,n
3 . To make up the

frequency range of interest in the testing condition B2

from 20GHz to 45GHz, we input 20
30 · P2 and 45

60 · P2 into
Fg,k,s,n
B3 (·) to predict S∗

2(30× 20
30 = 20, 60× 20

30 = 40, 121)

and S∗
2(30× 45

60 = 22.5, 60× 45
60 = 45, 121), respectively,

S∗
2(20, 40, 121) = S∗

2(30×
20

30
, 60× 20

30
, 121)

= Fg,k,s,n
B3 (

20

30
· P2), (71)

S∗
2(22.5, 45, 121) = S∗

2(30×
45

60
, 60× 45

60
, 121)

= Fg,k,s,n
B3 (

45

60
· P2). (72)

We extract the last 26 points of S∗
2(22.5, 45, 121) within

40GHz to 45GHz and integrate with S∗
2(20, 40, 121) to

form S∗
2(20, 45, 147),

S∗
2(40, 45, 26) = S∗

2(22.5, 45, 121)[:,−26 :], (73)

S∗
2(20, 45, 147) = {S

∗
2(20, 40, 121),S∗

2(40, 45, 26)}.
(74)

The label S2(20, 45, 147) is obtained through full-wave
simulation,

S2(20, 45, 147) ← Simulate(P2). (75)

LB32 equals the MSE between S2(20, 45, 147) and
S∗
2(20, 45, 147),

LB32 =
1

147
|S2(20, 45, 147)− S∗

2(20, 45, 147)|2.
(76)

(i) LB33 of Fg,k,s,n
B3 (·) on DB3

test in Bg,k,s,n
3 ,

LB33 =
1

121
|S3(30, 60, 121)− S∗

3(30, 60, 121)|2,
(77)

where

S∗
3(30, 60, 121) = Fg,k,s,n

B3 (P3). (78)

The testing results are listed in Table IV. It can be observed
that only proportional frequency points can be predicted, a
very complex multiple proportioning process is needed for
testing when involving more variable frequency conditions,
and the modeling accuracy in the unseen frequency conditions
deteriorates severely.

D. Proposed Method

We carry out the proposed method in multiple experiments
to validate its generalizability and scalability. The source
datasets are reformatted and converted to be frequency-wise.
For n-th pair of geometric parameters Pn and |S11|n (n ∈
[1, 150]) in B1, B2, or B3, Pn is converted to electrical
dimensions En(Pn, fx) using (15). Note that the relative geo-
metric parameter c in Pn is converted to an absolute geometric
parameter by c × (r1 − r2) before calculating its electrical
dimension. Each pair of En(Pn, fx) and corresponding |S11|n
at fx forms a new frequency-wise sample. The sizes of
the generated frequency-wise training, validation, and testing
datasets for each condition are increased by nf : 5670, 2430,
and 4050 for B1; 7070, 3030, and 5050 for B2; 8470, 3630,
and 6050 for B3, respectively. Every sample has a fixed input
size of 10 and an output size of 1.

1) Generalizability: To assess the generalizability, the pro-
posed method is compared with the existing methods by
training with data exclusively under each condition B1, B2,
and B3, referred to as Bp

1 , Bp
2 , and Bp

3 , respectively. Each
model is optimized through Bayesian optimization. As the
number of data increases proportionally with the number
of frequency points nf , the sampling ranges of the number
of epochs and the batch size are modified accordingly. The
number of epochs is sampled from 500 to 2000, with an
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TABLE IV
COMPARATIVE RESULTS IN IMPLEMENTATION B: PLANAR METASURFACE LENS

Exp. Trained Model Optimized Hyperparameters Test Loss (×10−2) on
on Ne Ng lr Nb Nh [Nn1, Nn2, · · · ] DB1

test DB2
test DB3

test
Bg

1

DB1
train

GPR − 5.19 10.20 13.22
Bk

1 Kri. − 6.99 8.18 8.38
Bs

1 SVR − 5.37 5.71 6.49
Bn

1 NN 800 8000 0.001 7 4 [256, 32, 32, 16] 2.47 3.45 6.99
Bp

1 Pro. 1000 70000 0.001 81 7 [256, 128, 256, 128, 32, 32, 128] 1.57 3.47 6.75
Bg

2

DB2
train

GPR − 13.93 3.52 7.60
Bk

2 Kri. − 10.74 3.92 8.22
Bs

2 SVR − 9.64 3.69 6.84
Bn

2 NN 1000 70000 0.0001 1 5 [64, 128, 256, 128, 128] 6.59 0.80 5.58
Bp

2 Pro. 2000 20000 0.001 707 4 [256, 256, 16, 32] 5.18 0.69 2.94
Bg

3

DB3
train

GPR − 14.72 6.17 4.66
Bk

3 Kri. − 10.62 7.79 6.29
Bs

3 SVR − 9.53 4.71 5.73
Bn

3 NN 800 8000 0.001 7 6 [256, 64, 256, 128, 128, 16] 8.42 3.16 3.24
Bp

3 Pro. 1500 52500 0.001 242 7 [32, 64, 32, 128, 128, 256, 256] 7.19 1.91 2.02

Bp
12

DB1
train
&

DB2
train

Pro. 2000 52000 0.0001 500 2 [256, 128] 2.36 0.94 3.51

Bp
13

DB1
train
&

DB3
train

Pro. 2000 58000 0.001 500 3 [64, 256, 32] 2.15 1.15 2.39

Bp
23

DB2
train
&

DB3
train

Pro. 1500 16500 0.001 1500 3 [256, 32, 32] 4.79 2.17 2.92

Bp
123

DB1
train
&

DB2
train
&

DB3
train

Pro. 2000 426000 0.001 100 3 [256, 256, 128] 2.00 0.79 1.74

Note: Exp. refers to the experiment index; GPR refers to Gaussian process regression;
Kri. refers to kriging; SVR refers to support vector regression;
NN refers to neural networks; Pro. refers to the proposed method;
Ne refers to the number of epochs; Ng refers to the number of gradient steps;
lr refers to the learning rate; Nb refers to the batch size;
Nh refers to the number of hidden layers; [Nn1, Nn2, · · · ] refers to the number of neurons in each hidden layer.

interval of 500. The batch size is sampled from 1 to 10 times
of nf , with an interval of nf . Here, nf equals 81 for Bp

1 ,
101 for Bp

2 , and 121 for Bp
3 , respectively. The other settings

remain unchanged. This modification minimizes the difference
between the existing and proposed methods during the training
procedures to ensure a fair comparison. By monitoring the
validation loss on DB1

val, DB2
val, or DB3

val for Bp
1 , Bp

2 , or
Bp

3 , respectively, the optimization ceases after 100 iterations
without improvement or upon reaching 500 iterations. Table IV
shows the optimized architectures. We test each model on all
three test datasets, DB1

test, DB2
test, and DB3

test. Let us take the
model in Bp

1 as an example, as it is solely trained on DB1
train,

testing on DB1
test indicates its interpolation ability, while testing

on DB2
test and DB3

test indicates its extrapolation ability under
unseen frequency conditions. The results are listed in Table IV.

The testing results are listed in Table IV. When the
model is trained on DB1

train, it improves the accuracy on
DB3

test in its unseen frequency condition in B3 by 3.5%

( |6.75−6.99|
6.99 ×100% ≈ 3.5%), while its performance for other

two conditions maintains. For the model trained on DB2
train, its

performance on DB1
test and DB3

test in its unseen conditions are
enhanced by 21.4% ( |5.18−6.59|

6.59 ×100% ≈ 21.4%) and 47.3%

( |2.94−5.58|
5.58 × 100% ≈ 47.3%), respectively. The model

trained on DB3
train realizes respective 14.6% ( |7.19−8.42|

8.42 ×

100% ≈ 14.6%) and 39.6% ( |1.91−3.16|
3.16 × 100% ≈ 39.6%)

enhancement of accuracy on DB1
test and DB2

test in its unseen
frequency conditions.

The comparative results show that the proposed method
significantly improves the modeling accuracy under unseen
frequency conditions while maintaining its performance in the
original condition, demonstrating the improved generalizabil-
ity of the proposed framework.

2) Scalability: The proposed model is jointly trained using
datasets from multiple frequency conditions to validate its
scalability, referred to as experiments Bp

12, Bp
13, Bp

23, and Bp
123

in Table IV. For example, Bp
12 refers to training on both DB1

train

and DB2
train. It can be considered as scaling up the model

in Bp
1 by incorporating new data DB2

train in a new condition
B2. Bp

123 refers to training using datasets under all the three
conditions, DB1

train, DB2
train, and DB3

train, which can be obtained
by scaling up any other models. When optimizing each model
through Bayesian optimization, the batch size is chosen from
a discrete set of values, [100, 200, 500, 1000, 1500, 2000], and
other hyperparameters are sampled from the same space in
Section IV-D1. The optimized models and corresponding test
results are listed in Table IV.

In general, the results in the experiments Bp
12, Bp

13, and Bp
23

indicate that the proposed model is scalable to incorporate
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Fig. 6. Comparison of |S11| curves in Implementation B. (a) A test sample in DB1
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variable frequency conditions, leading to further improved
generalizability. For example, as the model scaling up from Bp

1

to Bp
12, it further enhances the accuracy on DB3

test in its unseen
condition B3 by 48.0% ( |3.51−6.75|

6.75 × 100% = 48.0%).
Scaling up from Bp

1 to Bp
13 by incorporating DB3

train enhances
the accuracy on DB2

test under its unseen condition by 66.9%

( |1.15−3.47|
3.47 × 100% = 66.9%). Based on Bp

2 , scaling up
to Bp

23 reduces the modeling error on DB1
test in its unseen

condition by 7.5% ( |4.79−5.18|
5.18 × 100% = 7.5%). 39.8%

( |1.15−1.91|
1.91 × 100% = 39.8%) and 33.4% ( |4.79−7.19|

7.19 ×
100% = 33.4%) improvements are achieved by scaling up
from Bp

3 to Bp
13 and Bp

23, respectively.

The largest-scaled model Bp
123 incorporates all the three

frequency conditions, B1, B2, and B3, which can be obtained
by scaling up any other models, realizing superior modeling
performance across variable frequency conditions. |S11| curves
generated by neural networks and the proposed method are
compared in Fig. 6. Here, black curves marked as “Label” are
simulation results from the full-wave simulator CST, which
indicate the ground truth. The proposed method achieves

higher extrapolation accuracy along frequency than neural
networks. As the model is scaled up from single to triple
conditions, the modeling accuracy of |S11| curves enhances
and the maximum modeling error across variable conditions
reduces gradually, matching well the full-wave simulation
results, which demonstrates further enhanced generalizability.

Overall, the comparative results in Table IV validate the
improved generalizability and scalability of the proposed mod-
eling framework as the solving dimensionality increases from
five to ten under three different frequency conditions. Besides,
the modeling process is more flexible and straightforward
than the existing methods. This improvement is attributed to
the frequency-wise learning strategy that enforces the model’s
robust understanding of the EM similarity laws and non-linear
proportioning characteristics.

V. DISCUSSION

A. Potentials and Limitations

The enhanced generalizability and scalability of our pro-
posed approach are attributed to its embedding of the EM
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similarity laws and robust understanding of non-linear pro-
portioning characteristics. Therefore, our approach primarily
works in the applications with frequency-independent material
properties (permittivity ε, permeability µ, conductivity σ),
where the EM similarity laws hold true. Besides, its appli-
cation region is also limited by the dimensionality and data
availability. Theoretically, the proposed method can handle
more complex and higher-dimensional modeling because its
working principle is independent of dimensionality, as long as
sufficient training data samples are provided. As the dimen-
sionality grows, the amount of training data samples required
increases exponentially. Therefore, the highest dimensionality
is mainly limited by the available computational resources
for data generation. The model’s capability of handling high-
dimensional modeling can be further improved by utilizing
advanced sampling strategies, data augmentation techniques,
and small-sample machine learning approaches. In future
work, we will investigate small-sample frequency-wise learn-
ing techniques to reduce the computational costs and further
enhance the benefits of the proposed method. Tuning the
frequency sampling density is another meaningful direction
to explore. A basic strategy is to increase the frequency
sampling points where the EM responses vary heavily. An
optimized dynamic sampling strategy can be developed to
balance the computational costs and modeling performance
along the frequency domain.

Compared with the conventional full-wave-simulator-based
modeling methods, the proposed method significantly accel-
erates each modeling process and reduces the computational
costs. Although initial data collection and model training
require time and computational costs, the proposed method
shows superior long-term efficiency as the number of design
tasks increases, outperforming the existing methods. The tra-
ditional full-wave-simulator-based modeling approaches repet-
itively perform meshing and solve Maxwell’s equations to
model an EM structure for each setting of geometric parame-
ters, incurring redundant time and computational costs. In con-
trast, the proposed method effectively resolves the modeling
of the EM structure by developing a surrogate model trained
on representative simulation data, thereby enhancing the long-
term efficiency by eliminating the unnecessary repetitive time
and computation costs.

B. Increasing Complexity and Dimensionality

The modeling of a multi-resonant bandpass filter with
increasing complexity and dimensionality is investigated to
validate the proposed method.

A multi-resonant bandpass filter presented by Yang et al.
in [39] is modeled in Implementation C to validate the
flexibility and robustness of the proposed method. As shown
in Fig. 7, it consists of three metal layers, which are etched
on two substrate layers of Rogers RO4003C with relative
permittivity of εr = 3.38 and loss tangent of tanδ = 0.0027.
The top and bottom metal layers are two centrosymmetric
feeding structures. Each feeding structure is an open-ended
two-order microstrip line. The middle layer is composed of a
cross-shaped slot etched on a rectangular metal plane. A wide
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Fig. 7. Multi-resonant bandpass filter in Implementation C. (a) 3D view. (b)
Top and bottom metal layers. (c) Middle metal layer.

TABLE V
TWO DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING

GEOMETRIC PARAMETERS IN IMPLEMENTATION C: MULTI-RESONANT
BANDPASS FILTER

Condition
C1 C2

Frequency Range (GHz) [0.5, 3.5] [4, 28]
Points 61 241

Geometric
Parameters
(Unit: mm)

ls [9.1, 10.7] [1.3, 2.3]
lm [19.8, 21.2] [1.9, 3.0]
wm [3.3, 4.5] [0.7, 1.3]
ls1 [11.5, 12.5] [1.3, 2.1]
ls2 [2, 3] [1.1, 1.7]
ls3 [9.5, 10.5] [1.2, 1.8]
ws [1.2, 1.8] [0.2, 0.5]
ws1 [0.3, 0.7] [0.2, 0.4]
h 1.5 0.5
lx 45 7
ly 35 6
wf 1.5 0.5

passband filtering performance with multiple resonances is
generated. The filter’s reflection coefficient |S11| is optimized
by tuning 12 geometric variables (Ls, Lm, Wm, Ls1, Ls2, Ls3,
Ws, Ws1, h, lx, ly , and wf ), with other geometric parameters
fixed at constant values.

Table V exhibits two different frequency conditions, C1
from 0.5GHz to 3.5GHz with 61 points and C2 from
4GHz to 28GHz. Correspondingly, distinct tuning ranges are
assigned for the geometric parameters in C1 and C2. 180 pairs
of geometric parameters and |S11| are collected through Latin
Hypercube Sampling and full-wave simulation. Each |S11|
sample is of size 61 in C1 and 241 in C2, respectively. The
180 data samples under each condition are arbitrarily divided
into training, validation, and testing datasets in the ratio of
10 : 3 : 5 under a random seed: DC1

train, DC1
val, and DC1

test in
C1; DC2

train, DC2
val, and DC2

test in C2, respectively.
Four existing methods, Gaussian process regression, kriging,

support vector regression, and neural networks, are utilized to
model the filter for comparison. The existing methods have
difficulty in establishing an integrated model that incorporates
samples in both C1 and C2. Separate experiments and models
are assigned: Cg

1 , Ck
1 , Cs

1 , and Cn
1 in C1; Cg

2 , Ck
2 , Cs

2 , and
Cn

2 in C2, as listed in Table VI. During these experiments,
the geometric parameters and |S11| are normalized. Each data
sample has the output size of 61 in C1 and 241 in C2, while
the input size is fixed at 12. Similarly, each neural network
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TABLE VI
COMPARATIVE RESULTS IN IMPLEMENTATION C: MULTI-RESONANT BANDPASS FILTER

Exp. Trained Model Optimized Hyperparameters Test Loss (×10−2) on
on Ne Ng lr Nb Nh [Nn1, Nn2, · · · ] DC1

test DC2
test

Cg
1

DC1
train

GPR − 0.55 23.87
Ck

1 Kri. − 0.62 10.62
Cs

1 SVR − 0.24 14.24
Cn

1 NN 1000 13000 0.0001 8 4 [32, 32, 256, 16] 0.51 17.56
Cp

1 Pro. 600 7200 0.001 549 4 [16, 256, 32, 256] 0.65 9.78
Cg

2

DC2
train

GPR − 19.46 0.96
Ck

2 Kri. − 17.63 1.01
Cs

2 SVR − 15.83 1.34
Cn

2 NN 600 7200 0.001 9 3 [256, 64, 256] 6.21 2.00
Cp

2 Pro. 1000 13000 0.001 1928 4 [256, 128, 256, 128] 8.31 2.36

Cp
12

DC1
train
&

DC2
train

Pro. 1500 43500 0.001 200 2 [256, 32] 1.75 2.20

Note: Exp. refers to the experiment index; GPR refers to Gaussian process regression;
Kri. refers to kriging; SVR refers to support vector regression;
NN refers to neural networks; Pro. refers to the proposed method;
Ne refers to the number of epochs; Ng refers to the number of gradient steps;
lr refers to the learning rate; Nb refers to the batch size;
Nh refers to the number of hidden layers; [Nn1, Nn2, · · · ] refers to the number of neurons in each hidden layer.

model’s hyperparameters are optimized using Bayesian opti-
mization. Table VI records the test losses of the eight models
on DC1

test and DC2
test. Testing Cg,k,s,n

1 on DC1
test or testing

Cg,k,s,n
2 on DC2

test assesses the interpolation accuracy; testing
Cg,k,s,n

1 on DC2
test or testing Cg,k,s,n

2 on DC1
test measures the

extrapolation accuracy. The testing procedure is similar to that
of Implementation A and is therefore omitted for simplicity.
As shown in Table VI, the kriging model (Ck

1 ) under the
C1 condition realizes the highest extrapolation accuracy on
DC2

test under the C2 condition. However, the kriging model’s
performance (Ck

2 ) under the C2 condition severely deteriorates
when extrapolating on DC1

test under the C1 condition. Con-
versely, the neural network model (Cn

2 ) under the C2 condition
obtains the highest extrapolation accuracy on DC1

test under
the C1 condition, but Cn

1 under the C1 condition exhibits
significant degradation when extrapolating on DC2

test under the
C2 condition.

In experiments Cp
1 and Cp

2 , two proposed models are
separately trained under C1 and C2, respectively. Their hyper-
parameters are optimized within similar tuning ranges using
Bayesian optimization. The proposed method’s generalizabil-
ity is validated by comparing Cp

1 with Cg,k,s,n
1 and comparing

Cp
2 with Cg,k,s,n

2 , respectively. As shown in Table VI, the
existing methods sometimes perform well under one condition,
but their extrapolation ability might severely deteriorate when
switching to another condition. Compared with them, the pro-
posed method achieves balanced extrapolation accuracy under
both conditions C1 and C2, with comparative performance
with kriging under C1 and with neural networks under C2.

Superior to the existing approaches, the proposed method
enables an integrated model that leverages training samples
under both conditions, DC1

train and DC2
train, referred to as Cp

12

in Table VI. As it scales up from Cp
1 or Cp

2 , Cp
12 significantly

reduces the maximum modeling error, which demonstrates
enhanced scalability for variable frequency conditions.

VI. CONCLUSION

This paper introduces a unified frequency-wise electromag-
netic (EM) modeling framework to enhance generalizability
and scalability for variable frequency conditions. The proposed
method addresses the limitations inherent in existing modeling
techniques, which suffer from deteriorated accuracy under
unseen frequency conditions and require multiple separate
models for different frequency conditions. Integrating a novel
frequency-wise learning strategy, our approach enforces a ro-
bust understanding of the EM similarity and non-linear propor-
tioning characteristics, hence improving generalizability and
scalability for variable frequency conditions. The effectiveness
of the proposed framework is demonstrated through multiple
implementations involving increased solving dimensionality
and variable frequency conditions. Compared with the exist-
ing methods, including Gaussian process regression, kriging,
support vector regression, and neural networks, the proposed
framework outperforms with respect to generalizability and
scalability. It has the potential to develop a powerful large-
scale EM model by incorporating significant frequency con-
ditions, thereby greatly accelerating the design and optimiza-
tion processes in diverse EM applications. Future work may
leverage its capabilities to encompass other EM problems and
extend generalizability and scalability for diverse geometric
topologies.
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