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Abstract—Electromagnetic (EM) modeling accelerates the de-
sign and optimization of EM structures by predicting their
frequency-dependent features such as |S11|. Current methodolo-
gies constrain each model to a fixed frequency range at specified
points, thereby necessitating the training of separate models for
different frequency conditions, which limits generalizability and
scalability in real-world applications. This paper introduces a
novel EM modeling framework with improved generalizability
and scalability. It significantly enhances modeling accuracy for
frequency conditions not previously encountered. The model can
be easily scaled up by incorporating new data with variable fre-
quency conditions, thereby further improving the generalizability.
Our method incorporates a frequency-wise learning strategy
that enforces a robust understanding of the frequency-dependent
working mechanism of EM structures. We demonstrate the
effectiveness of our approach through multiple implementations
with variable frequency conditions. The comparative results
validate the improved generalizability and scalability, showcasing
its potential to simplify and enhance EM design processes.

Index Terms—Electromagnetic modeling, generalizability, ma-
chine learning, scalability.

I. INTRODUCTION

LECTROMAGNETIC (EM) modeling plays a pivotal
Erole in the design and analysis of electromagnetic struc-
tures, which are integral to a wide array of applications
ranging from telecommunications to medical devices. The
key challenge in this domain is to predict the frequency-
dependent characteristics, such as |Si1], according to the
geometric parameters, which is essential for understanding the
performance of EM structures.

Full-wave simulation is a common technique for EM mod-
eling. However, each simulation process can require pro-
hibitively expensive computational resources. The design and
optimization of an EM structure require many modeling
iterations, resulting in high computational costs. Therefore,
machine learning-based approaches for EM modeling have
been proposed to serve as faster alternatives to full-wave
simulation for predicting EM characteristics. By training using
sufficient simulation data, the models can replicate the rela-
tionship between geometric parameters of EM structures and
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Fig. 1. Illustration of motivation. (a) Existing methods have fixed frequency
ranges and points, restricting their generalizability and scalability. (b) The
proposed method aims to enhance generalizability (improve the accuracy at
unseen frequency outside the training frequency range) and scalability (be
compatible with variable frequency ranges and points)

their frequency-dependent features. Although developing these
models requires significant simulation data, once trained, they
enable fast and accurate modeling, significantly accelerating
the long-term design and optimization processes of EM struc-
tures. Our previous works [1], [2] significantly reduce the data
needed for training the surrogate models by integrating with
high-quality data acquisition methods.

Multiple types of EM modeling methods have been investi-
gated, such as Gaussian process regression [3]-[6], polynomial
chaos expansion [7]-[9], kriging [10]-[13], support vector
regression [14]-[16], and neural networks [17]-[35].

Gaussian process regression provides probabilistic predic-
tions by assuming a Gaussian process with characterized mean
and covariance functions. J. Jacobs used Gaussian process
regression to estimate how the varying finite substrate and
ground plane size affected the gain of microstrip antennas
at fixed frequency points [4]. Z. Zhang et al. developed a
two-level Gaussian process regression method for accurate
surrogate modeling of antennas [5]. The first-level model
imitated the relationship between the geometric parameters
and EM responses over the frequency band of interest, and
it was complemented by the second-level model to predict
the difference between the first-level predictions and simulated



EM responses. C. Hu et al. proposed a nonstationary Gaussian
process surrogate model to be compatible with the dynamic
conditions during the optimization process [6]. Its nonstation-
arity was achieved by dynamically adjusting the mean and
covariance functions based on the dynamic decision variables.
Gaussian process regression requires careful selection of ker-
nel functions and could be computationally expensive for large
datasets.

Polynomial chaos expansion aims to formulate the uncer-
tainty propagation features of complex systems. It represents
a stochastic process as a series expansion of orthogonal
polynomials, which are determined based on the probability
distribution of the input random variables. J. Du et al. applied
polynomial chaos expansion to model the relationship between
random disturbances and a parsimonious representation of the
far-field radiation of antennas [7]. A. Petrocchi et al. analyzed
the residue calibration uncertainty and consequent non-linear
capacitances in microwave transistor non-linear models [8].
Expanded vector spherical harmonics of the far field radiated
by antennas subject to random variables were modeled through
polynomial chaos expansion in [9]. Polynomial chaos expan-
sion requires knowledge of probability distributions.

Kriging, also known as kriging interpolation, uses weighted
averages of known points to predict unknown points based
on spatial correlations. S. Koziel et al. established a co-
kriging model for accurate antenna modeling [10], which
was trained using sparse high-fidelity and dense low-fidelity
EM simulation data. A triangulation-based constrained kriging
modeling method was proposed in [11] for contemporary
antenna structures. They significantly reduced the training
data needed to develop the surrogate model by restricting the
solving space based on a set of optimized reference designs. A
similar modeling technique was introduced in [12], replacing
the optimized reference designs with a small set of random
observables. Integrating the performance-driven data confine-
ment with multi-resolution simulations further enhanced the
modeling performance [13]. Kriging is suitable for spatially
stationary data distributions.

Support vector regression, a type of support vector machine
designed for regression tasks, optimizes a function that fits the
training data by minimizing deviations from the true target
values within a specified margin, while maintaining model
simplicity. D. Prado er al. applied support vector regression
to model the elements of shaped-beam reflectarray antennas
as a substitute for full-wave simulation [14], [15]. J. Jacobs et
al. established a Bayesian support-vector-regression model for
planar antennas. They reduced the number of required training
points by exploiting coarse-discretization EM simulations. The
modeling performance of support vector regression is sensitive
to the choice of hyperparameters.

Inspired by the human brain, neural networks with intercon-
nected artificial neurons organized in layers can learn complex
projections and data patterns. C. Roy et al. employed an
artificial neural network (ANN) to map the equivalent circuit
model parameters to EM model geometric parameters of the
target EM structure within a band of interest [24]. The target
EM structure is segmented into a series of discontinuities.
Each discontinuity and coupling between the discontinuities

is associated with an equivalent circuit model to extract the
circuit parameters over the desired band. This methodology
ensures the consistency of the extracted circuit parameters
over a wide frequency band. H. Kabir er al. presented a
systematic neural network framework for inverse modeling
of microwave waveguide filters [25]. The source data with
non-unique multivalued solutions were separated into multiple
groups with only unique solutions, which were used to train
multiple inverse models. These models were integrated to
improve the modeling performance by alleviating the effects of
non-uniqueness. They formulated a set of neural network sub-
models for modeling waveguide filters in [26], decomposing
the task into multiple low-dimensional problems and thus
reducing the computational cost. Neural network modeling
was combined with physics-informed domain confinement for
small-sample antenna modeling in [27]. W. Liu et al. pro-
posed model-order reduction-based neuro-impedance matrix
transfer functions to enhance the modeling accuracy for two-
port microwave components [28]. Similarly, a pole-residue-
based transfer function was integrated with artificial neural
networks to model the reflection coefficients of frequency-
selective surfaces over desired frequency ranges [29].

The aforementioned modeling methods are inherently bound
to fixed frequency ranges and points, which show limited gen-
eralizability and scalability, as seen in Fig. 1(a). In real-world
scenarios, the existing simulation or measurement data might
derive from multiple design cases at variable frequency ranges.
For example, wireless communication terminal manufacturers
design and update an EM structure for diverse products,
such as smartphones and tablets, accumulating simulation and
measurement data at variable frequency ranges. It would cause
extra costs if we re-simulate or re-measure these products to
include all frequency ranges. A distinct surrogate model is
required for the EM structure over each frequency range with
fixed points of interest. The well-trained model cannot directly
predict the EM responses for unseen frequency conditions,
where the frequencies fall outside the training frequency range.
Although the EM similarity laws allow indirect estimations
over new frequency ranges by proportioning the geometric
parameters, the predictable frequency points are fixed to be
proportional to the training frequency points, multiple propor-
tioning processes are needed to make up a wide frequency
range, and the modeling performance severely deteriorates.
Training a multitude of models tailored to multiple frequency
bands demands significant computational resources and time.
To resolve this challenge, an intuitive solution is to extend the
target frequency range and densify the points to cover all the
desired frequency ranges and points, resulting in redundant
solution space and increased complexity.

The increasing diversity of EM applications necessitates a
more efficient modeling strategy that accommodates variable
frequency conditions without needing multiple models. To
address the challenge, this paper proposes an innovative EM
modeling framework that unifies the modeling process across
different frequency conditions into a single, cohesive model, as
shown in Fig. 1(b). It is mainly achieved through frequency-
wise learning. Unlike existing methods that attempt to imi-
tate the relationship between geometric parameters and EM
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Fig. 2. Comparison of working principle between the existing and proposed methods. (a) Existing methods use fixed frequency ranges and points, limiting
generalizability and scalability. (b) The proposed method integrates frequency-wise learning, leading to enhanced generalizability (improved accuracy in unseen
frequency range) and scalability (compatible with variable frequency range and points).

responses over the frequency band of interest, our approach
focuses on modeling EM responses at arbitrary frequency
points subject to certain frequency-dependent electrical dimen-
sions. These electrical dimensions are transformed from the
geometric parameters. By leveraging frequency-wise learning,
our approach dynamically adapts to varying frequency bands
and points, enhancing generalizability and scalability. We con-
duct multiple implementations to evaluate the generalizability
and scalability of the proposed method. Implementation A:
Meander-Line Polarizer considers a five-dimensional modeling
task with two different frequency conditions. Implementation
B: Planar Metasurface Lens increases the dimensionality to
ten and has three different frequency conditions. The com-
parative results demonstrate the improved generalizability and
scalability of the proposed method. The potentials and limi-
tations of our approach are discussed when further increasing
the dimensionality and complexity in Implementation C. By
addressing the generalizability and scalability issues inherent
in current EM modeling practices, our work enables more
efficient design and optimization of EM structures.

The main contributions of this paper are summarized as
follows:

1) A novel frequency-wise modeling framework is proposed
for accelerating the design and optimization of EM struc-
tures.

2) We improve the generalizability by enforcing the surro-
gate model to obtain a robust understanding of the EM
similarity laws and non-linear proportioning characteris-
tics of EM structures.

3) We enhance the scalability to be compatible with variable
frequency conditions.

4) We conduct a comprehensive comparison of our proposed
method against the existing methods through multiple
implementations, which involve increased dimensionality
and variable frequency conditions.

The remainder of this paper is organized as follows. Section
IT explains the working principle of the proposed framework.
Section III evaluates the generalizability and scalability of our
framework through Implementation A: Meander-Line Polar-
izer, which considers a five-dimensional modeling problem
under two different frequency conditions. Section IV conducts
further validations as the dimensionality increases to ten, and
three different frequency conditions are considered, referred
to as Implementation B: Planar Metasurface Lens. Section
V clarifies the potentials and limitations of our method for
higher-dimensional and more complex modeling applications.
Section VI gives the conclusion.

II. METHODOLOGY

Modeling an EM structure aims to develop a numerical
surrogate model to quickly predict its EM responses over the
frequency band of interest (such as |Si1]) as its geometric
parameters change. Fig. 2 illustrates and compares the working
principle of the existing and proposed methods, where the
modeling of |S11| is used as an example. Note that |Sq1] is
only used as a representative of general EM responses for
simplicity in Fig. 2. The theoretical analysis in Section II



is applicable to various EM responses such as EM fields,
scattering parameters, and phases.

A. Problem Statement

1) Training in Fixed Frequency Conditions: The working
principle of the existing methods, for example, Gaussian pro-
cess regression, kriging, support vector regression, and neural
networks, is shown in Fig. 2(a). Each pair of geometric pa-
rameters and EM responses over the desired frequency band is
formatted as two fixed-sized vectors, P and S(fmin, frmaz, ),
which are normalized to P and S(fymin, fmazsnf), TESPEC-
tively, between 0 and 1. Here, f.;, and f,.q, mark the
frequency range of interest, and n; denotes the number of
frequency points. Existing methods manage to estimate a
surrogate model F(-) that projects P to S(fmin, fmaz, 1 )

ﬁ(fminvfmamvnf) = Fe(ﬁ), ne {1,2,'“ ,N}. (1)

S*(fmin, fmaz,ny) denotes the predicted normalized EM re-
sponses. N equals the number of training data. The surrogate
model F.(-) is optimized by minimizing the mean squared
error (MSE) between the predicted and actual normalized
EM responses (S*(fmins fmazsny) and S(fimin, fmazs f)
respectively) for all the N training data,

1 on 1 =
(08 :{?Iel%r; N;?f‘ n(fmin;fmaacvnf)
*Sin(fmimfmaacvnf)F
Tem 1 o o
= {}Rr; NZ nff‘Fe(Pn) _Sn(fminafmam7nf)|2'

3
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-

2)

Here, O, denotes the optimization metric for training the
surrogate model.

2) Modeling in Fixed Frequency Conditions: During
the design and optimization process, in the fixed fre-
quency condition (from fpin to fmee With njy points)
that F.(-) is trained on, F.(-) can predict EM responses
for new input geometric parameters P,.,, denoted as

S:ew (fminv fma;m nf ) S:ew (fmin7 f'maxa nf) is denormalized

from Sjlew (f’mina f’rnaa;a Tlf), which is obtained by
S:Lew(fminyfmamanf) = Fe(Pnew)- 3)
The modeling error (L.) is calculated by

1

Le - E|%(fminyfmamvnf) 7%(fmm7fma$’nf)‘2

1 ngo -
= 72 Snew(fe) _Snew(f:c)|2a “)
nf =1

where z € {1527"' ,nf} and fL € {fmin7"' afmaw}-

ny points
Unseen  Frequency Conditions:
EM  responses in unseen frequency  conditions,
Snew(fumins fumaz: Muys), cannot be directly predicted
through this surrogate model but only by combining with
the EM similarity laws. The EM similarity laws are derived

3) Modeling in

from the scaling properties of Maxwell’s equations. There are
three prerequisite conditions for the EM similarity laws: all
geometric parameters are scaled by a factor k; the frequency
points are scaled inversely by k; the material properties
(permittivity €, permeability i, conductivity o) are frequency-
independent and keep unchanged. Under the prerequisite
conditions, the EM fields, scattering parameters, and phases
approximately remain the same at the proportionally increased
frequency points if proportionally decreasing the geometric
parameters,

§(fmina fmam nf) ~ §(m . fminy m- fma:m ’n,f)(S)
g(fmzny fmam; nf) — Simulate(P), (6)

S(m - fmin. M - frmaz,Nf) Simulate(% -P). @)

With assumptions of fumin = M« fins fumaz = M frazs
Ny = ny, and the n,s frequency points being proportional
to the ny counterparts, Syew (fumin, fumaz, ug) can be ex-
pressed as

Snew(fuminv fumazvnuf) = g(m : fmina m - fmazvnf)
S(fminvfmamanf)~ ()

Thus, S;,..,(fumin: fumaz, Nus) can be predicted by combin-

new
ing the surrogate model with a proportioning process,

%

S:Le’w(fumin7 fumaacv nuf) ~ g(fmmu fmaxa nf)

’

= FG (Punew)a (9)

P.c, = normalize(m - Pypeqy). (10)

Although modeling unseen frequency conditions is possible
using the EM similarity laws, this approach suffers from
low flexibility, high complexity, and reduced accuracy. The
assumptions should hold to obtain S, (fumin, fumaz, Nus)
by combining the surrogate model with one proportion-
ing process, showing low flexibility. Otherwise, multi-
ple proportioning processes are required to make up
S e (fumins fumaz, Nuys), which significantly increases the
computational complexity. Detailed processes of both cases
will be presented in the implementations in Section III and I'V.
AS S(fmins fmazsnys) and S(m - fonin, M+ frmaz,ny) are not
strictly equal, their complete relationship can be formulated

as,

g(m . fminvm : fmama nf) = §(f1ﬂzna fmaxynf) + A(Tn)
(11)

Here, A(m) represents the non-linear responses caused by
the proportioning impedance and radiation properties. A(m)
varies with respect to the proportioning scale m of the unseen
frequency conditions. As A(m) increases to be noticeable
(A(m) > e, where ¢ is a minimum threshold), the gener-
ated S) .., (fumins fumaz, M) might deviate from the actual
Snew(fumins fumaz, Muys). The modeling error (L.,,) for un-
seen frequency conditions is calculated by

1

Leu = |Srlew (fumi'na fu'ma;c7 nuf)
Ny f

*Snew(fumivu fumam7 nuf) ‘2-

12)



Replacing the right side of (12) with (9) and (11), L, is
converted to

Leu = |Snew<fm7,'nv fmaz7 TLf)
Sn@w(m Jmin, m - fmawvnf)|2

= |Snew(fmin> fmaz7nf)
_[ 'rLe'w(.f’rrzin) f’maa:v ’I’Lf) + A(m)] ‘2

1 &
— y Z ISE 0 (f2) = [Snew (fo) £ A(m
Jox=1

c {1’2’...

)17, (13)

where x 7nf} and fm S {fmin»"' afmax}-

n oints
Compared with L. in (4), L., reveals that the exis{igg methods
suffer from deteriorated modeling accuracy for the unseen
frequency conditions.

4) Limited Generalizability and Scalability: Therefore, the
existing methods have limited generalizability and scalability:
the modeling for the unseen frequency conditions suffers
from low flexibility, high complexity, and low accuracy; their
working mechanism refrains them from being compatible with
variable frequency conditions.

B. Unified Frequency-Wise Modeling Framework

To be compatible with variable frequency conditions in
diverse real-world EM scenarios, a unified frequency-wise
EM modeling framework with improved generalizability and
scalability is proposed, as shown in Fig. 2(b).

1) Working Principle: The proposed unified frequency-
wise EM modeling framework can be expressed as,

S(f) = Fy(P, - 12

2y, (14)
N} e {1,2,--- ,ns}. fo €

Co
Here, n € {1,2,---
, fmax } 18 an arbitrary frequency within the defined

{fmin; o

ny points

frequency band. S*(f,,) denotes the predicted normalized EM
response value at f,, and S*(f;) is the denormalized value.
Unlike existing methods that directly model between normal-
ized geometric parameters (P) and normalized EM responses
for fixed frequency range and points (S(fin, fmaz, f)),
our frequency-wise modeling framework converts geometric
parameters P,, to electrical dimensions by

el

Co

EP,, f.) =P, (15)

Here, E(P,,, f,) represents the electrical dimensions of P,
at f,. fr uses the unit of Hz, P, uses mm, and the speed
of light in free space ¢y uses mm/s. As P, < J‘i—: in most
cases, E(P,,, f,) falls between 0 and 1, requiring no further
normalization. P,, might contain both absolute and relative
geometric parameters. Absolute geometric parameters directly
determine the physical dimensions of EM structures, while
relative geometric parameters define specific physical dimen-
sions as a function of certain absolute geometric parameters.
The definition of relative geometric parameters simplifies the

adjustment of complex EM structures. The relative geomet-
ric parameters in P, are converted to absolute geometric
parameters before being converted to electrical dimensions.
This process ensures the physical meaning of the converted
electrical dimensions.

2) Training Stage: In the training process, the model is
optimized by minimizing the difference between the predicted
and actual normalized EM responses at each frequency f, for
all the training data. Its optimization metric O, is expressed
as

N 1 ny L
0p=pgﬁg;g S5, (F2) = Su(f2)l”
SR for a2
:ﬁn%ﬁz;z 'g)_sn(fm)"(l6)

3) Modeling Stage: During the design and optimization
process, the model can predict EM responses for any frequency
condition Snew(f(u)mm, f(wymaz> M (u)f), Which is the denor-
malized format of S, (f(w)min, f(u)ymaz: (u)s) generated by

%(f(u)mzn7fu)maxan(u ) - {S (f(u mln)
(f(u)mcu)}a (17)

§(fnew) = Fp (Pnew : fnf’w ) (18)

Co
where fnew € {f(u)mwm e 7f(u)maa:}-
The causality and passivity of the predicted EM responses
of the proposed surrogate model are maximized through the
following six aspects.

1) Data generation. The training data are sampled using
Hypercube Sampling to represent the geometric solving
space thoroughly and effectively. The EM responses of
these data samples are generated using high-fidelity full-
wave simulation to ensure data accuracy.

2) Activation function. Suitable activation functions are uti-
lized to confine the predicted values within reasonable
ranges. For example, as the EM responses are normalized
between 0 and 1 in Implementations A and B, Sigmoid
is utilized as the activation function for the output layer
to ensure the reasonability of the predictions.

3) Model architecture optimization. The model’s architec-
ture is thoroughly optimized using Bayesian optimization
to maximize its modeling accuracy, including the causal-
ity and passivity for unseen geometric parameters.

4) Model validation. A separate validation dataset is gener-
ated, which contains unseen geometric parameters. Along
with the training process, the model is validated on a
separate validation dataset to avoid overfitting, ensuring
the modeling accuracy for unseen geometric parameters.

5) Model testing. A separate testing dataset with unseen ge-
ometric parameters is generated. The well-trained model
is tested on this testing dataset to assess its accuracy for
unseen geometric parameters.

6) The final EM structure design is simulated via high-
fidelity full-wave simulation to validate its performance.
Fabrication and measurement can be carried out for
further validation if needed.



C. Generalizability

The existing methods lack generalizability because they pri-
marily rely on the EM similarity laws to predict EM responses
for unseen frequency conditions. Noticeable deviations might
occur, because they ignore A(m) caused by the non-linear
proportioning characteristics of the impedance and radiation
properties. Our proposed modeling framework addresses this
limitation by embedding the EM similarity laws and enforc-
ing a robust understanding of the non-linear impedance and
radiation proportioning properties, thus enhancing the model’s
generalizability for unseen frequency conditions.

1) Joint Training: Let us consider two training samples at
two distinct frequency points, f, and f,, which originated
from the same set of geometric parameters (P,) and the
corresponding EM responses. They can be expressed as

Si(£) = (2 2, (19)
g(fy) = Fp(Pn : JC%/)’ (20)

where fo < fy. fo. fy € {fmin, - s fmaaz}. The proportion
between these two frequency points, denoted as m, is defined

by the ratio m = <, and m ranges within (I, J}:"n—“:]
Accordingly,
S.(fy) = S (m- fa), @1
/ m-
Fp(Pn ) *y) = Fp(Pn J)
Co Co
=F,(m P, - ﬁ) (22)
Co
Based on (11), we have
ﬁ(m fa) = ﬁ(fm) + Ap(m). (23)
Replacing the right side of (21) with (23), we have

Replacing the left side component in (20) with (24) and
replacing its right side component with (22), the training step
in (20) is transformed to

e

Co

S (f2) £ A(m) = Fp(m Py, - =2). (25)

Considering joint training of (19) and (25), the optimization
metric of our approach is improved compared with O, of

existing methods, which is equivalent to

1 N 1 ng—1 nf—
M DW= I

(IS5, (f2) = Sn(f2)” + IS* (fy) — 7(fy)|2)

1 N 1 ng—1 nf—
:fr‘rjﬁﬁgnf—l ; ny—1x z; 2

+I8,(f2) = A(m) — Sn(fy)IQ)

1 N 1 ny—1 nf—
:fr‘rjﬁﬁgnf—l wz_:l nyg—1x z; 2

(R (P, 22) 8,07

0
HE(m - P+ 1) - 8101)2). 6)

As expressed in (26), the optimization metric of our approach
integrates the propagation of £A(m) < m (m € (1, J;:—“:])
The integration of +A(m) + m (m € (1, J;mi]) enforces the
model to better understand the EM similarﬁgfn laws and non-
linear proportioning characteristics caused by the impedance
and radiation properties, hence improving the extrapolation

modeling accuracy for unseen frequency ranges.

2) Improved Generalizability: In the design and optimiza-
tion stage, the model can predict EM responses for variable
frequency conditions (from f(u)min 0 fluymaz With 7y
points) by (17) and (18). Instead of a rough approximation
through the EM similarity laws, S*(fpe) in (18) is directly
predicted by the model with a robust understanding of the EM
similarity laws and non-linear proportioning characteristics.
Due to its enhanced understanding of the non-linear propor-
tioning characteristics, the modeling error L, for variable
frequency conditions is expressed as

p(u

LZD(U) = ) f |Snew( (u)min f(u)maz7 n(u)f)
_Snew (f(u mins f(u)maa:7 n(u)f) ‘2
T(u) f
= Z |Snew fnew - new(fnew)|2~ 27
s o,

Compared with L., of existing methods in (9), the modeling
error for unseen frequency conditions L, is significantly
reduced, thereby greatly improving generalizability for vari-
able frequency conditions. Note that formula (27) does not
necessarily imply that the model error for unseen frequency
conditions Ly, is reduced to a level close to L, for the
original frequency condition. In general, L,, keeps greater
than L,,, because m for unseen frequency conditions probably
exceeds its original range (1, L ’"‘“] that the model is trained
on. Nevertheless, (27) indicates that the proposed method
greatly enhances the modeling accuracy for unseen frequency
conditions.



D. Scalability

Real-world applications now encompass increasingly di-
verse frequency conditions, necessitating enhanced scalability
of the modeling framework. The existing methods require
a distinct surrogate model for the specific frequency range
and points of interest. Once trained on data from a certain
frequency condition ranging from fomin t0 famaz With nay
points, the surrogate model is not scalable to incorporate data
from a new frequency range ranging from fgmin 0 famaas
with ngf POimS’ when famin 74‘ fﬁm.inv famaz # fﬁmaxv
and n.y # ngy. Some works sample multiple frequency
ranges and include frequency as one of the inputs, achieving
interpolation modeling along the frequency domain. However,
they require complete EM responses of multiple frequency
ranges for each data sample, which could be difficult to obtain
in real-world scenarios. The frequency conditions are diverse
in real-world scenarios. Different data samples could have
different frequency ranges, and some data samples might lack
EM responses at certain frequency ranges.

The unified frequency-wise modeling framework resolves
this problem by enabling the integration of variable frequency
conditions into a single model,

Jai 8

?(fa,m,ﬂ) =F,(P,,.. 35" T)’

fOé:E S {famina e 7focmaa:}7

Ty points
fﬁr S {fﬁm,inv e 7fﬁmam} .

ngy points

(28)

Here, “a,---,3” represent indexes for variable frequency
conditions, from which « and g index two arbitrary ones.
Assuming that fomin < famaz < [8min < fBmaz. the
sampling region of the proportioning ratio is expanded from
(1,?3’"7‘”] to (1, ];im“:] by ff’"“}i;f:m”. With additional
frequency conditions involved, the sampling region of the
proportioning ratio m continuously grows. By sampling m
from a progressively expanded region, the surrogate model
achieves a more robust understanding of the EM similarity
laws and imperfect proportioning properties, showing im-
proved scalability.

III. IMPLEMENTATION A: MEANDER-LINE POLARIZER
A. Meander-Line Polarizer

Implementation A involves modeling the co-polarization
transmission coefficient |S2;| of a meander-line polarizer. Its
unit cell is composed of two crossed meander microstrip lines
that are etched on a dielectric substrate with a thickness
of hy = 0.254mm and relative permittivity of ¢, = 2.2,
as illustrated in Fig. 3. The microstrip lines of every two
adjacent unit cells along the z direction connect and form a
closed loop. This polarizer converts an incident wave, linearly
polarized at 45° along the z direction, into a circularly-
polarized signal. The co-polarization transmission coefficient
|S21] indicates its polarization conversion performance. |Sa|
is mainly controlled by five geometric parameters, L, W, a,
d, and s. Here, a is a relative parameter that denotes the ratio

() (b)

Fig. 3. Unit cell of the meander-line polarizer in Implementation A. (a) 3D
view. (b) Top view.

TABLE I
TwoO DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING
GEOMETRIC PARAMETERS IN IMPLEMENTATION A: MEANDER-LINE

POLARIZER
Condition
Al A2
Range (GHz) [10, 25] [20, 40]
Frequency Points = i
Geometric L 3.6,4.7 [1.8,2.4]
Parameters w 1.7,2.6 [0.85,1.55]
(Unit: mm; a [0.3,0.45] [0.3,0.45]
*Unit: 1) d [15,2.4] | [0.7,1.3]
' s [0.2,0.45] | [0.05,0.2]

of folded length along the z axis, as shown in Fig. 3. The
definition of a prevents the folded length from exceeding half
the width of the unit cell 0.5W during sampling.

B. Data Preparation

Two frequency conditions are defined: Al from 10 GHz
to 25 GHz at an interval of 0.25 GHz with 61 points; A2
from 20 GHz to 40 GHz at an interval of 0.25 GHz with 81
points. As shown in Table I, a distinct parameter range is
assigned for the five geometric parameters in each condition
based on the design experience. Under each condition, 100
combinations of geometric parameters are sampled using Latin
Hypercube Sampling, and the corresponding 100 |So;| are
generated through full-wave simulation. The respective sizes
of |Sa1] in A1 and A2 are 61 and 81, respectively. In each
condition, the collected 100 pairs of geometric parameters
and |So;| are arbitrarily divided into training, validation, and
testing datasets in the ratio of 2 : 1 : 2 under a random seed:
DAL DAL and D#l, in Al; D2, DA% and D{:2, in A2,
respectively. These datasets undergo different modifications in
the existing and proposed methods. Thus, each dataset has a
different size in the existing and proposed methods, but its
encapsulated information remains unchanged.

C. Existing Methods

For comparison, we apply four existing methods, Gaus-
sian process regression (AY and Af), kriging (A} and A%),
support vector regression (A; and A3), and neural networks
(A7 and AZ%), for modeling the meander-line polarizer in
the two conditions, A1 and A2, respectively, as listed in
Table II. It is difficult for the existing methods to train an



integrated model incorporating A1 and A2 data samples,
because each condition’s data samples have distinct frequency
ranges and the existing methods require identical frequency
ranges. Each experiment is carried out in three independent
runs under three random seeds. In each run, the source data
are arbitrarily divided into datasets under a distinct random
seed, and the experiments are conducted accordingly. During
these experiments, the datasets are normalized between 0 and
1. The geometric parameters are normalized by subtracting
the minimum values and dividing by the range between the
maximum and n_linimum values. For example, L is normalized
through ma)lcl(_lll;]i?r(lfn)(L) = 4.7€n_n?f3r%mmm in A‘(lj’k’syn' Here, the
relative geometric parameter a and other absolute geometric
parameters are normalized using this min-max scaling to fall
within the 0 to 1 range. We convert the |Sa;| values from
decibel (dB) format to linear format (values between 0 and
1). Under each condition, the 100 samples are separated
arbitrarily to form training, validation, and testing datasets
with sizes of 40, 20, and 40, respectively. Each sample has
a fixed input size of 5. The output size is 61 in Al and
81 in A2. During the training process in A?"*" DAL s
utilized for training a surrogate model, and Dfall is used for
validation. In AJ**™ DAZ. and DA2 are used for training
and validation, respectively. We use the Adam optimizer and
the mean squared error (MSE) between actual and predicted

|S21| linear values as the loss function.

Gaussian process regression employs a combination of
constant kernel and radial basis functions as its kernel function.
Support vector regression uses a linear kernel. Neural networks
use Sigmoid as the activation function for the output layer
and ReLU for the other layers. Each neural network model’s
hyperparameters are optimized using Bayesian optimization,
including the number of epochs, the learning rate, the batch
size, the number of hidden layers, and the number of neurons
in each hidden layer. The number of training epochs is
determined by a quantized uniform distribution ranging from
200 to 1000, with intervals of 200. The learning rate is selected
from a discrete set of values, [0.0001, 0.001]. The batch size
is sampled from a quantized uniform distribution between 1
and 10, with increments of 1. The number of hidden layers is
sampled from a quantized uniform distribution between 2 and
8. The number of neurons per hidden layer is chosen from the
set [16, 32, 64, 128, 256]. The optimization process stops
either after 50 consecutive iterations with no improvement
or when it reaches 200 iterations. The validation loss from
DAL serves as the assessment metric in A7}, and DA2 in
AZ, respectively. The optimized hyperparameters for the two
neural network models are outlined in Table II. The number of
gradient steps determined by the number of epochs and batch
size is also shown in Table II.

Each of the eight well-trained models is tested on both
DAL, and D;i2, to assess its accuracy for the original and
unseen frequency conditions. The test results are listed in
Table II. Note that each loss value is the average result of three
independent runs. To test a model’s interpolation accuracy in
its original frequency condition, testing on DAL, in A9F*"

or testing D;22, in AS**" respectively, we directly input the

geometric parameters to predict the |S2; | values. As for testing
the extrapolation or extension ability in unseen frequency
conditions, testing on D22, in A9"*™ or testing on DAL, in
AJF5™ | respectively, the surrogate model is combined with
the EM similarity laws for prediction. The EM similarity laws
reveal that an EM structure with %n times proportioned geo-
metric size maintains similar performance at m times higher
frequency. It may require multiple proportioning processes to
cover a wide target frequency range.

To describe the testing procedure for the original and
unseen frequency conditions, F% " (-) represents the model
trained in A Fsn P represents the geometric param-
eters in D:}fst, and P; denotes the normalized parame-
ters. ?;(f(,u)mi,n,f(u)max,n(u)f) denotes the predicted nor-
malized [Sa1| from fi,ymin O fluymaz With n(,)s points.
S (fewymins fuymazs N(uys) is the actual normalized |S21].
Lagj is the test loss of F4™*"(:) on D;Y,, where i,j €
{1,2}. The detailed testing procedure is introduced below.
() Lap of F$P5™() on DAL, in A9%*" §7(10,25,61) is

predicted by feeding Py into F%"*" () to calculate the
MSE between S; (10,25, 61),

1 — —
L = a|sl(10,25,61) —$3(10,25,61)|%, (29)
where

S7(10,25,61) = F%F*m(Py). (30)
(b) Laio of F%5m() on DA2, in A9™*" P, is increased

tes
}CT = %8 times and normalized with respect
min

to the parameter range in Al. The normalized % <Py is
input into F%1*"(-) to predict S5(10 x 22 = 20,25 x

by m =

10 —
2 =50,61),
_ — 20 20
* 1) = S*(1 — —,61
S$5(20,50,61) = S5(10 x 10°2° % 196 ),
20
— pohksn 2V py 31
m (g Pe) @31

The last 20 |Ss;| values corresponding to frequencies
above 40 GHz are cut off to fit the target frequency range
in the testing condition A2 from 20 GHz to 40 GHz,

S3(20,40,41) = 85(20,50,61)[;,: —20].  (32)
S2(20,40,41) is collected via simulation as label,
S2(20,40,41) < Simulate(Py). (33)

Lai> equals the MSE between S5(20,40,41) and
S3(20, 40, 41),

1 —
Lz = 47[52(20,40,41) — 85(20,40,41). (34)

(©) Lagi of F$5*™() on DAL, in A$**™. Two propor-
tioning processes are conducted to cover the target fre-
quency range in the testing condition A1 from 10 GHz
to 25 GHz. Specifically, we input % -P; and % - P; into




F%5*m() to predict St (20>< 10=10,40 x 10 = 20,81)
and S7(20 x 22 =12.5,40 x 22 = 25,81), respectlvely,
— — 10 10
He! 1) = 4 1
$1(10,20,81) = S7(20 x 55,40 x o+, 81)
10
_ w9k il
= Fi5" (55 - ), (35)
S7(12.5,25,81) = §7(20 x el 40 x = 25 ,81)
B e 40’ 40’
sn 25 o
= F%™ (E Py). (36)

The last 32 points of S}(12.5,25,81) from 20 GHz to
25 GHz are extracted, excluding the point at 20 GHz. The
extracted values are concatenated with S7(10,20,81) to
generate S7(10,25,113),

S7(20,25,32)

= §7(12.5,25,81)[:, —32 1], (37)
§7(10,25,113) = {

S7(10,20,81),87(20,25,32)}.
(38)

We collect the label S;(10,25,113) through full-wave

simulation,
ST(lO,QE), 113) <« Simulate(P;). 39)

La21 equals the MSE between S1(10,25,113) and
S7(10,25,113),

1 — _
Lz = 713[81(10,25,113) — §7(10,25,113) *
(40)
(d) Lagg of Fg ok, n( ) on Déit in Ag,k,s,n’
1 — _
Laze = 8T|Sz(20740781) —§3(20,40,81)2, (41)
where

$5(20,40,81) = F%5*™(Py). (42)

Although we can generate |S»;| within the unseen fre-
quency ranges through the EM similarity laws, it suffers from
low flexibility, high complexity, and reduced accuracy. The
available frequency points are constrained to be proportional
to those in the training condition. Multiple proportioning
procedures are needed to make up a wide target frequency
range. The surrogate model has limited performance within
the unseen frequency ranges, as shown in Table II, because it
lacks robustness against the non-linear characteristics of the
proportioning impedance and radiation properties.

D. Proposed Method

The proposed method is validated through multiple ex-
periments. Each experiment is repeated in three independent
runs under the three random seeds, which are the same as
those used in the existing methods. We reformat and con-
vert the source datasets to be frequency-wise. The geometric
parameters P,, are transformed into the electrical dimensions
E,(P,, f.) using (15). The relative geometric parameter a
in P, is converted to an absolute geometric parameter by

multiplying it by 0.5W before calculating its electrical dimen-
sion. The geometric parameters are within a wavelength of the
operating frequency. Thus, the converted electrical dimensions
approximately range between 0 and 1. Each E,(P,, f.) is
paired with the corresponding |So1|, at f, to form a new
frequency-wise sample. In A%, as |Sa1],, contains 61 frequency
points in Al, each pair of P,, and |Sa1|, is converted into
61 pairs of frequency-wise samples. The reformatted size of
the generated frequency-wise training, validation, and testing
dataset in Al is 40 x 61 = 2440, 20 x 61 = 1220, and
40 x 61 = 2440, respectively. In A%, each pair of P,, and
|S21]n is converted into 81 pairs of samples, forming training,
validation, and testing datasets of sizes 3240, 1620, and 3240,
respectively. For both A} and A%, each sample has a fixed
input size of 5 and output size of 1.

1) Generalizability: To compare with the existing methods,
the proposed method is separately conducted in each condition
Al or A2 for validating generalizability, referred to as exper-
iments A} and A%, respectively, as shown in Table II. A} is
compared with A9**™ to validate the generalizability of the
proposed method, including the interpolation and extrapolation
ability. Correspondingly, A% is compared with AZ**" for
validation. In AY, the model is solely trained on Al using
the specified training dataset D{\l. . and it is validated on
DAL In A’z’, the model is solely trained and validated on
A2 using D2, and DA%, respectively. We optimize the
hyperparameters of these models using Bayesian optimization.
For a fair comparison, the learning rate, the number of hidden
layers, and the number of neurons in every hidden layer are
sampled from the same space, and the activation function
remains unchanged as those for neural networks in Section
III-C. In response to the increase in dataset size by the number
of frequency points 61 or 81, the sampling range of the number
of epochs was modified, ranging from 500 to 2000, with
intervals of 500; the optimization space for the batch size is
proportionally extended, sampling from 1 x ny to 10 x ny
with increments of ny, where ny = 61 in A} and ny = 81 in
AB, respectively. The validation loss on Dml is taken as the
optimization metric in A%, and Dml in AL, respectively. The
optimization process is designed to end after 50 iterations if no
improvement occurs or at the 200th iteration. The optimized
hyperparameters are given in Table II.

After training, each model is tested on both D, and D12,
to assess its accuracy for the original and unseen frequency
conditions. For the model that trained on D{}L. in A, testing
on D{Al, measures its interpolation accuracy for its original
frequency condition A1, and testing on D2, evaluates its
extrapolation accuracy for an unseen frequency condition A2.
The testing results are compared with existing methods in
Table II.

Compared with neural networks that reach the best model-
ing performance, the proposed model trained in A} enhances
the modeling accuracy on D;!2, for the unseen frequency
range by 10.6 % (w x 100 % = 10.6 %). Although its
modeling error on Dj.., for the original frequency condition
increases, it remains a small value and is significantly lower
than the modeling error on D;{!2,. The model trained in A}
improves the modeling accuracy on D{., for the unseen



TABLE II
COMPARATIVE RESULTS IN IMPLEMENTATION A: MEANDER-LINE POLARIZER

Trained Optimized Hyperparameters Test Loss (x10—%) on
Bxp | Ton [ MM TN T TN, | N [Not, Nz, ] DAL, D72,
A!f GPR — 0.34 5.40
AP Kri. — 0.23 9.43
A3 DAL SVR — 19.17 31.46
A7 train NN 1000 6000 0.0001 7 3 [256, 256, 32] 0.34 5.20
A7 Pro. 1500 | 60000 0.001 61 6 [256, 128,16, 32, 32, 250] 0.56 4.65
Ag GPR — 175.93 0.68
A% Kri. - 14.81 0.53
A3 DA2 SVR — 31.67 19.84
AL train NN 800 8000 0.001 4 5 [32,256, 32,16, 16] 7.92 0.76
A7 Pro. 1000 | 40000 0.001 81 2 [64,128] 5.72 0.34
AT
train
AP, & Pro. 1500 | 43500 0.001 200 2 [256, 32] 2.04 1.60
Note Extl;a 7;Telfers to the experiment index; GPR refers to Gaussian process regression;
Kri. refers to kriging; SVR refers to support vector regression;
NN refers to neural networks; Pro. refers to the proposed method;
N, refers to the number of epochs; Ny refers to the number of gradient steps;
Ir refers to the learning rate; Ny, refers to the batch size;
Ny, refers to the number of hidden layers; [Nn1, Npa2, - - -] refers to the number of neurons in each hidden layer.
— label ¥ AT < A modeling error before scaling. To better visualize the im-
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Fig. 4. Comparison of |S21| curves in Implementation A. (a) A test sample
in D?&}st for A7, A%, A7, AP, and AT,. (b) A test sample in D;“eit for
An, AT, AP, AP and AY,. (“Label” denotes the label |S21| generated from
full-wave simulation.)

frequency condition by 27.8 % (W x 100 % = 27.8 %),
while maintaining its performance on D2, in the original
condition. The results in A} and A) demonstrate the enhance-
ment of extrapolated modeling performance compared with
the existing methods, indicating the improved generalizability
of the proposed method.

2) Scalability: A surrogate model is jointly trained using
both D;iL.and D2, to validate its scalability, referred to
as an experiment AY, in Table II. The model is optimized
using Bayesian optimization under the same sampling space
as in Section III-D1, except that the batch size is chosen from
a discrete set of values, [100, 200, 500, 1000, 1500, 2000].
Table II shows the optimized model and testing results.

The model in A%, can be considered as scaling up the
model in A} by incorporating new data Di2. in a new
condition A2, or scaling up A} by adding DL, , respectively.
It greatly improves and balances the modeling accuracy across
two different frequency conditions A1 and A2. Although the
modeling error in the original frequency condition slightly

increases, it is still significantly lower than the maximum

provement, Fig. 4 compares the |So;| curves generated by
neural networks (A7 and A%) and the proposed method (AY,
AP, and A7,). Simulation results generated from full-wave
simulators are used as the ground truth, represented as black
curves and denoted as “Label”. Seeing A7 and A} denoted
as blue curves with hollow and solid down-triangle-shaped
marks, respectively, the proposed method shows better ex-
trapolation performance along out-of-range frequency A2 than
neural networks, while the modeling accuracy in A1 slightly
deteriorates. The proposed method reaches the best modeling
performance in AY,, which is denoted as red curves with star-
shaped marks, matching well with full-wave simulation results.
The comparative results demonstrate the improved scalability
of the proposed method to incorporate variable frequency
conditions.

IV. IMPLEMENTATION B: PLANAR METASURFACE LENS
MODELING

We further validate the improved generalizability and scala-
bility of the proposed method by implementing it on a planar
metasurface lens, when the solving dimensionality increases
from five to ten and three different frequency conditions are
considered.

A. Planar Metasurface Lens

Implementation B aims to model the reflection coefficient
|S11] of a planar metasurface lens for millimeter-wave MIMO
applications presented in [38]. Its unit cell structure is il-
lustrated in Fig. 5. It consists of two back-to-back hy =
0.254 mm thick Rogers RT'5880 substrate layers with relative
permittivity of €, = 2.2. These two substrate layers are
separated by a h thick air gap layer. Two identical curved
Jerusalem crosses are etched on the outer layers of the two
substrate layers, which are depicted in Fig. 5. 10 geometric
parameters, 1, 2, W, W1, Wa, C, g1, g, P, and h, are adjusted to
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Fig. 5. Unit cell of the planar metasurface lens in Implementation B. (a) 3D
view. (b) Top and bottom metal layers.

modify the |S11]. ¢ is a relative geometric parameter associated
with the folded length of the outer arm. Including c as a design
parameter prevents the outer and inner arms from overlapping
during the exploration of the solution space.

B. Data Preparation

We define three conditions (B1, B2, and B3) with differ-
ent frequency ranges and points, as listed in Table III. For
example, in Bl, the planar metasurface lens operates from
15GHz to 35GHz, and the modeling focuses on |Sii| at
ny = 81 frequency points with an interval of 0.25 GHz. Each
frequency condition is associated with a distinct adjustable
space for the geometric parameters. For each condition, we
collect 150 pairs of geometric parameters and |S;| to form
training, validation, and testing datasets. The 150 combinations
of geometric parameters are defined using Latin Hypercube
Sampling within the specific adjustable space. Note that p
and h are set as constant values in each condition during
sampling, but they are included as the input for modeling
across different conditions. Correspondingly, 150 |S11]| vectors
of size n; within respective frequency ranges are generated
using full-wave simulation. In a ratio of 7 : 3 : 5, we form
training, validation, and testing datasets in each condition
under a random seed: DBL. DBl and DE!L, for B1; D22

DBQ 5o 1?7'(11'713’3 1)al’B3 B3 train?
> and D75, for B2; D.v. . D.°v, and Dy, for B3, re-
spectively. The division ratio for datasets differs slightly from
that of Implementation A: Meander-Line Polarizer, because the
total amount of data is different. The ratio between training
and validation remains similar % ~ %, and a relatively large
amount of testing data is arranged for consistency.

C. Existing Methods

Gaussian process regression (B{, Bj, and BJ), kriging (B},
B%, and B§), support vector regression (B7, B3, and B3), and
neural networks (BT, By, and BY) are applied for modeling
in the three frequency conditions, referred to as twelve ex-
periments in Table IV. The existing methods require identical
frequency ranges, hence refraining an integrated model from
being trained with all the B1l, B2, and B3 data samples.
Each experiment is repeated in three independent runs under
three random seeds, respectively, to yield an average result
for consistency. We normalize the geometric parameters by
subtracting the minimum values and dividing by the range
between the maximum and minimum values. For example,

TABLE III
THREE DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING
GEOMETRIC PARAMETERS IN IMPLEMENTATION B: PLANAR
METASURFACE LENS

Condition
B1 B2 B3
Range
Frequency (Gng , | [(15,35) 20, 45) 30, 60]
Points 81 101 121
™ 2.1,2.7] | [1.35,1.75] | [0.9,1.2]
ro 1.1,1.7 [0.5,0.9] 0.45,0.75
w 0.1,0.35 0.05,0.2 0.05,0.15
Geometric w1 0.1,0.35 0.05,0.2 0.05,0.15
Parameters wa 0.1,0.35 0.05,0.2 0.05,0.15
(Unit: mm; *c 0.4,0.8 0.4,0.8 0.4,0.8
*Unit: 1) g1 0.4,0.8 0.2,0.6 0.2,04
g 06,1.2 04,08 0.2,0.5
P 6.2 1 2.8
h 1.0 0.8 0.6

r1—min(ry)
max(r1)—min(ry)

r1—2.1 mm
2.7mm—2.1 mm

r1 is normalized by in
BIF=™ 16,1 | values are converted from decibel (dB) format
to linear format between 0 and 1. In each condition, by
separating the 150 samples arbitrarily under a random seed,
we form training, validation, and testing datasets of size 70,
30, and 50. In each condition B1, B2, or B3, each sample
has an input size of 10 and an output size of 81, 101, or
121, respectively. During the training process in BY%",
DBL. " is utilized to train a surrogate model, while DB} is
used for validation. Accordingly, BJ™*" and BS**™ use
their corresponding datasets, respectively. The loss function is
defined as the mean squared error (MSE) between actual and
predicted |S11| linear values.

The kernel and activation functions for these existing
methods are the same as those used in Implementation A:
Meander-Line Polarizer. Each neural network’s architecture
is thoroughly optimized through Bayesian optimization. The
key hyperparameters under exploration include the number of
training epochs, the learning rate, the batch size, the number
of hidden layers, and the number of neurons. Specifically,
the number of training epochs is sampled from a quantized
uniform distribution from 200 to 1000, with intervals of
200. The learning rate is optimized using a discrete set of
values, [0.0001, 0.001]. The batch size is sampled from
a quantized uniform distribution between 1 and 10, with
increments of 1. The number of hidden layers is sampled
from a quantized uniform distribution between 2 and 8. The
number of neurons in each hidden layer is chosen from the
set [16, 32, 64, 128, 256]. Adam is taken as the optimizer.
The optimization is terminated after 50 iterations without
improvement or upon reaching the maximum number of
iterations, 300. The validation loss on the respective validation
dataset serves as the assessment metric in By, By, or BY,
respectively. The optimized architectures of the three neural
networks are listed in Table IV.

Once trained, each of the twelve models is tested on D!,
DE2, and DZ3, to evaluate its accuracy and generalizability.
The average test losses are listed in Table IV. For each
model, testing the interpolation ability in its original frequency
condition is straightforward, for example, testing the model in



BIF=™ on DBL We test the model’s extrapolation ability
under its unseen frequency conditions by combining the EM
similarity laws, for example, testing the model in BY**"
on DB2, and DP3,. For clarity, we define the model in
BIM™ a5 F45*™ (), the denormalized geometric parameters
in Bj as P;, the normalized parameters as ﬁj, the label
normalized |S11| from f)min 10 fruymaz With n(y,)y points
as &(f(u)mm, f(wymaz> N (u)f)» the predicted normalize}? [S11]
as S;(f(u)mm, fwymaz> M) f)» and the test loss of F%.7*"(-)
on D as Lpi;. Here, i,j € {1,2,3} denotes the index
related to three conditions, B1, B2, and B3. We test each
model under the following guidelines.
(a) Lpyi of F4¥*"() on DBL, in BY**". We directly in-
put Py into F%*" (- to predict S} (15,35, 81) and calcu-
late the MSE between S; (15, 35,81) and Sj(15,35,81),

1 _
Lpu = 5;[S1(15,35,81) —§7(15,35,81)°, 43)

where

Si(15,35,81) = F4b=n(p)). (44)

(b)

Lp1a of F4P*™(.) on D2, in BY*5™ We proportion-
ally increase Py by m = % =
main

it within the parameter region in B1, and input % -Poy

20 times, normalize

into F%,*" () to predict S5(15 x 22 = 20,35 x 2 ~
46.7,81),
— — 20 20
S5(20,46.7,81) = S3(15 x 15 3% % 1581
s, 20
= F4Fem(Z . py). (45)

15

As the target frequency range in the testing condition B2
is from 20 GHz to 45 GHz, the last 5 |S11| values out of

this range are cut off,
S5(20,45,76) = §5(20,46.7,81)[;,: —5].  (46)

Due to the misalignment of the existing S2(20, 45,101),

we simulate and collect label S3(20, 45, 76),
S2(20,45,76) « Simulate(P5). (47)

Lpi> equals the MSE between S5(20,45,76) and
S5 (20,45, 76),

1 _
Lz = =5[82(20,45,76) — §5(20, 45, 76))2. (48)

(©) Lpis of F&H*"(.) on DB3, in BI"™*". Py is enlarged
by m = f‘ﬁﬁ = i’—g jmes, normalized, and input into
F%5" () to predict S3(15 x 32 = 30,35 x 30 = 70, 81),

_ _ 30 30
55(30,70,81) = S5(15 x 7,35 x T, 81)
s, 30
= F31"" (35 Pa). (49)

The last 20 |S11| values out over the maximum frequency
of interest in the testing condition B3, 60 GHz, is cut off,

S3(30,60,61) = 85(30,70,81)[:,: —20].  (50)

(d)

(e

®

The label S3(30,60,61) is acquired through full-wave
simulation,

S5(30,60,61) + Simulate(Ps). (51)

Lpi3 is obtained by calculating the MSE between
S3(30,60,61) and S5(30, 60, 61),

1 _
Lz = 5;[S5(30,60,61) —§5(30,60,61)°. (52)

Lpay of F45*™ () on DBL, in BY**™ To make up
the target frequency range in the testing condition B1
from 15GHz to 35 GHz, we input % -Py and % Py
into F455m(.) to predict 87(20 x 35 = 15,45 x 33 =
33.75,101) and S7(20 x 22 ~ 15.6,45 x 32 = 35,101),
respectively,

15 15

—.4 —, 101

50" 42 X 59101
Jk,s,m 15

:F%’Q ' (270'1)1)’

35 35

S¥(15. 101) = S¥(20 x 22,45 x == 101
S7(15.6,35,101) 81(0x45,5x45,0)

Jk,s,n 35
= Fg; (E -Py).

The last 7 points of S?(lf)ﬁ7 35,101) within 33.75 GHz

S7(15,33.75,101) = S}(20 x

(53)

(54)

to 35GHz are extracted and concatenated with
S7(15,33.75,101) to obtain S7(15,35,108),
S7(33.75,35,7) = S7(15.6,35,101)[:, =7 3], (55)

S%(15,35,108) = {S}(15,33.75,101),S7(33.75,35,7)}.
(56)
We collect the label S;(15,35,108) through full-wave

simulation,

S1(15,35,108) + Simulate(P;). (57)

Lpoy equals the MSE between S1(15,35,108) and
S7(15,35,108),

1 —
——|S1(15,35,108) — 87 (15, 35, 108)|>.

L =
P21 108
(58)
Lpas of F%’g’s’"(.) on DB2, in Bg,k,s,n’
1 — _
Lpa = ﬁ\82(20,45, 101) — S3(20, 45,101)|?,
(59)
where
S3(20.45.101) = F5*"(B). (60)

Lpas of 5 *" () on DE3, in B§™". We input 35 - P;
into F%55™(.) to predict 85(20 x 32 = 30,45 x 0 =

20
67.5,101),
— - 30 30
: 5,101) = S5(20 x =45 x =101
$3(30,67.5,101) = S5(20 x 5,45 x -, 101)

1,30
Jk,s,n
= F%Q (55 Pa)-

20 D)



9]

(h)

We cut off the last 20 points of Sj(30,67.5,101) over
the desired maximum frequency 60 GHz in the testing
condition B3 to form S;(30, 60, 81),

S5(30,60,81) = S5(30,67.5,101)[:,: —20]. (62)

The label S3(30,60,81) is acquired through full-wave
simulation,

S5(30,60,81) < Simulate(Ps3). (63)

Lpas equals the MSE between S3(30,60,81) and
SZ(30, 60, 81),

1 _
Lpas = 57[S3(30,60,81) —§5(30,60,81)[. (64)

Lpz1 of F4E*"(.) on DPL, in BY™®". To cover the

frequency range of interest in the testing condition B1

from 15 GHz to 35 GEZ, we input % -P; and 2—8 - P; into

F%5°m () to predict §(30 % o = 15,60 x 5o = 30, 121)

and S7(30 x 33 = 17.5,60 x 22 = 35,121), respectively,
15 15

SH(1 121) = ST = —= 121
S7(15,30,121) Sl(30><30,60><30, )

Py), (65)
35

29 60 x 22 121
<50 2

(66)

We concatenate Sj(15,30,121) and the last 34 points
of 87(17.5,35,121) within 30 GHz to 35GHz to form
Si(15,35,155),
S7(30,35,34) = §7(17.5,35,121)[:, =34 :],  (67)
S7(15,35,155) = {S7(15,30,121),S7(30, 35, 34)}.
(63)

We collect the label S;(15,35,155) through full-wave
simulation,

S1(15,35,155) < Simulate(Py). (69)

Lps1 equals the MSE between S;(15,35,155) and
Si(15,35,155),

1
Lps1 = ﬁ|81(15,35, 155) — 87 (15, 35, 155)|.

(70)
Lpsa of F4E 5" (-) on DP2, in BY"*™. To make up the
frequency range of interest in the testing condition B2
from 20 GHz to 45 GEZ, we input % - Py and % - Py into
F555" () to predict S5(30x 23 = 20,60 x 23 = 40,121)
and S5(30 x 82 = 22.5,60 x 32> = 45,121), respectively,

— 20 20

S3(20,40,121) = S5(30 x =—, 60 x —, 121
2( ’ ) ) 2( X 30> X 307 )
20
=F45°" (o - P 71
B3 (30 2) (71)
— — 45 45
S5(22.5,45,121) = S%(30 x —, 60 x —, 121
2( ) ) ) 2( X 607 X 607 )
15

We extract the last 26 points of 875(22@ 45,121) within
40 GHz to 45 GHz and integrate with S5(20,40, 121) to
form S3(20, 45, 147),
S5(40,45,26) = 85(22.5,45,121)[:, —26 :],  (73)
S3(20,45,147) = {S5(20,40,121), S5(40,45, 26)}.

(714)

The label S3(20,45,147) is obtained through full-wave
simulation,

S5(20,45,147) « Simulate(P5). (75)

Lps> equals the MSE between S5(20,45,147) and
S3(20,45, 147),

1 — _
Lpsz = 7;[52(20,45,147) — §3(20,45, 147) .

(76)
(i) Lpss of F45*™(-) on DB3, in B™*",
Lpss = ﬁll\s?(go,fso, 121) — S5(30, 60, 121)|?,
(77)
where
S5(30,60,121) = FL5°"(Py). (78)

The testing results are listed in Table IV. It can be observed
that only proportional frequency points can be predicted, a
very complex multiple proportioning process is needed for
testing when involving more variable frequency conditions,
and the modeling accuracy in the unseen frequency conditions
deteriorates severely.

D. Proposed Method

We carry out the proposed method in multiple experiments
to validate its generalizability and scalability. The source
datasets are reformatted and converted to be frequency-wise.
For n-th pair of geometric parameters P,, and |Si1|, (n €
[1, 150]) in B1, B2, or B3, P,, is converted to electrical
dimensions E,, (P, f;) using (15). Note that the relative geo-
metric parameter c in P,, is converted to an absolute geometric
parameter by ¢ X (r; — r2) before calculating its electrical
dimension. Each pair of E,,(P,,, f.) and corresponding |S11|n
at f, forms a new frequency-wise sample. The sizes of
the generated frequency-wise training, validation, and testing
datasets for each condition are increased by ny: 5670, 2430,
and 4050 for B1; 7070, 3030, and 5050 for B2; 8470, 3630,
and 6050 for B3, respectively. Every sample has a fixed input
size of 10 and an output size of 1.

1) Generalizability: To assess the generalizability, the pro-
posed method is compared with the existing methods by
training with data exclusively under each condition B1, B2,
and B3, referred to as BY, B, and B, respectively. Each
model is optimized through Bayesian optimization. As the
number of data increases proportionally with the number
of frequency points ny, the sampling ranges of the number
of epochs and the batch size are modified accordingly. The
number of epochs is sampled from 500 to 2000, with an



TABLE IV
COMPARATIVE RESULTS IN IMPLEMENTATION B: PLANAR METASURFACE LENS

Exp Trained Model Optimized Hyperparameters Test Loss (x10—2) on
’ on Ne | Ny [ &r T Ny [ Ny] [Nn1, Nn2, - - -] Dft | D% D%,
Bf GPR — 5.19 10.20 13.22
Bf Kri. — 6.99 8.18 8.38
By B1 SVR — 5.37 5.71 6.49
BT train NN 800 8000 0.001 7 4 [256, 32, 32,16] 2.47 3.45 6.99
BY Pro. 1000 70000 0.001 81 7 [256, 128, 256, 128, 32, 32, 128] 1.57 3.47 6.75
Bg GPR — 13.93 3.52 7.60
B§ Kri. - 10.74 3.92 8.22
B3 DB2 SVR — 9.64 3.69 6.84
BY train NN 1000 70000 0.0001 1 5 [64,128,256, 128, 128] 6.59 0.80 5.58
BY Pro. 2000 20000 0.001 707 4 [256, 256, 16, 32] 5.18 0.69 2.94
Bg GPR — 14.72 6.17 4.66
B§ Kri. — 10.62 7.79 6.29
B3 B3 SVR — 9.53 4.71 5.73
By train NN 800 8000 0.001 7 6 [256, 64, 256, 128,128, 16] 8.42 3.16 3.24
BY Pro. 1500 52500 0.001 242 7 [32,64, 32,128,128, 256, 256] 7.19 1.91 2.02
DBl
train
BfQ Pro. 2000 52000 0.0001 500 2 [256,128] 2.36 0.94 3.51
giin
BT
train
st Pro. 2000 58000 0.001 500 3 [64, 256, 32] 2.15 1.15 2.39
friin
B2
train
353 Pro. 1500 16500 0.001 1500 3 [256, 32, 32] 4.79 2.17 2.92
Dﬁzzn
B
Dtr}zzn
Bf% Dgim Pro. 2000 | 426000 0.001 100 3 (256, 256, 128] 2.00 0.79 1.74
B3
train
Note:  Exp. refers to the experiment index; GPR refers to Gaussian process regression;

Kri. refers to kriging;

NN refers to neural networks;

N, refers to the number of epochs;

Ir refers to the learning rate;

Ny, refers to the number of hidden layers;

interval of 500. The batch size is sampled from 1 to 10 times
of ny, with an interval of n;. Here, ny equals 81 for BY,
101 for BY, and 121 for BE, respectively. The other settings
remain unchanged. This modification minimizes the difference
between the existing and proposed methods during the training
procedures to ensure a fair comparison By monitoring the
validation loss on DBL DBZ or DB3 for BY, BY, or
BY, respectively, the optimization ceases after 100 iterations
without improvement or upon reaching 500 iterations. Table IV
shows the optimized architectures. We test each model on all
three test datasets, D2L,, DB2, and DP3,. Let us take the
model in B} as an example, as it is solely trained on DL,
testing on D1, indicates its interpolation ability, while testing
on D22, and DP3, indicates its extrapolation ability under
unseen frequency conditions. The results are listed in Table I'V.

The testing results are listed in Table IV. When the
model is trained on D} it improves the accuracy on

t'ruzn’
DB3, in its unseen frequency condition in B3 by 3.5%
(W 100 % = 3.5 %), while its performance for other

two conditions maintains. For the model trained on D22, its
performance on Dtesf and D23, in its unseen conditions are
enhanced by 21.4 % (MXIOO % =~ 21.4 %) and 47.3 %

(12942558 o 100 % ~ 47.3%), respectively. The model

558 |7.19—8.42]
(L1522

B3
trained on D 215

o Tealizes respective 14.6 %

SVR refers to support vector regression;

Pro. refers to the proposed method;

Ny refers to the number of gradient steps;

Ny, refers to the batch size;

[Nn1, Np2, - - -] refers to the number of neurons in each hidden layer.

100 % = 14.6 %) and 39.6 % ('19;)71216' x 100% =~ 39.6%)
enhancement of accuracy on DJZ!, and DE2, in its unseen
frequency conditions.

te@ te@

The comparative results show that the proposed method
significantly improves the modeling accuracy under unseen
frequency conditions while maintaining its performance in the
original condition, demonstrating the improved generalizabil-
ity of the proposed framework.

2) Scalability: The proposed model is jointly trained using
datasets from multiple frequency conditions to validate its
scalability, referred to as experiments BY,, BY;, BY,, and BY,,
in Table IV. For example, BY, refers to training on both DB
and DB2. . Tt can be considered as scaling up the model
in BY by incorporating new data D52, in a new condition
B2. 3123 refers to training using datasets under all the three
conditions, DB, DB2. “and DP3. . which can be obtained
by scaling up any other models. When optimizing each model
through Bayesian optimization, the batch size is chosen from
a discrete set of values, [100, 200, 500, 1000, 1500, 2000}, and
other hyperparameters are sampled from the same space in
Section IV-D1. The optimized models and corresponding test
results are listed in Table IV.

In general, the results in the experiments BY,, BY,, and BY,
indicate that the proposed model is scalable to incorporate
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Fig. 6. Comparison of |S11| curves in Implementation B. (a) A test sample in
By, By, BY, BY, BY, and B}. (c) A test sample in DE3, for BY, By, B}, BY, BY

Frequency (GHz)
(e) (f)

DBl

Bl for BY, By, B}, BY, B, and BY. (b) A test sample in DZ2, for

test
and BY. (d) A test sample in DE!, for BY,, BY,, Bb,, and

BY,. (e) A test sample in DB2, for BY,, BY;, B, and BY,,. (f) A test sample in Dfﬁi for BY,, BY5, BY,, and BY,,. (“Label” denotes the label |S11|

generated from full-wave simulation.)

variable frequency conditions, leading to further improved
generalizability. For example, as the model scaling up from BY
to BY,, it further enhances the accuracy on D3, in its unseen

condition B3 by 48.0% (222571 5w 100% = 48.0%).
Scaling up from BY to BY, by incorporating D23, enhances

the accuracy on D2, under its unseen condition by 66.9 %
(% x 100% = 66.9%). Based on B, scaling up
to Bb, reduces the modeling error on D!, in its unseen
condition by 7.5% (L7222 % 100% = 7.5%). 39.8%
(L2190 5 100% = 39.8%) and 33.4% (T2
100% = 33.4%) improvements are achieved by scaling up

from BY to BY; and BY,, respectively.

The largest-scaled model B, incorporates all the three
frequency conditions, B1, B2, and B3, which can be obtained
by scaling up any other models, realizing superior modeling
performance across variable frequency conditions. |S11| curves
generated by neural networks and the proposed method are
compared in Fig. 6. Here, black curves marked as “Label” are
simulation results from the full-wave simulator CST, which
indicate the ground truth. The proposed method achieves

higher extrapolation accuracy along frequency than neural
networks. As the model is scaled up from single to triple
conditions, the modeling accuracy of |Si;| curves enhances
and the maximum modeling error across variable conditions
reduces gradually, matching well the full-wave simulation
results, which demonstrates further enhanced generalizability.

Overall, the comparative results in Table IV validate the
improved generalizability and scalability of the proposed mod-
eling framework as the solving dimensionality increases from
five to ten under three different frequency conditions. Besides,
the modeling process is more flexible and straightforward
than the existing methods. This improvement is attributed to
the frequency-wise learning strategy that enforces the model’s
robust understanding of the EM similarity laws and non-linear
proportioning characteristics.

V. DISCUSSION
A. Potentials and Limitations

The enhanced generalizability and scalability of our pro-
posed approach are attributed to its embedding of the EM



similarity laws and robust understanding of non-linear pro-
portioning characteristics. Therefore, our approach primarily
works in the applications with frequency-independent material
properties (permittivity e, permeability g, conductivity o),
where the EM similarity laws hold true. Besides, its appli-
cation region is also limited by the dimensionality and data
availability. Theoretically, the proposed method can handle
more complex and higher-dimensional modeling because its
working principle is independent of dimensionality, as long as
sufficient training data samples are provided. As the dimen-
sionality grows, the amount of training data samples required
increases exponentially. Therefore, the highest dimensionality
is mainly limited by the available computational resources
for data generation. The model’s capability of handling high-
dimensional modeling can be further improved by utilizing
advanced sampling strategies, data augmentation techniques,
and small-sample machine learning approaches. In future
work, we will investigate small-sample frequency-wise learn-
ing techniques to reduce the computational costs and further
enhance the benefits of the proposed method. Tuning the
frequency sampling density is another meaningful direction
to explore. A basic strategy is to increase the frequency
sampling points where the EM responses vary heavily. An
optimized dynamic sampling strategy can be developed to
balance the computational costs and modeling performance
along the frequency domain.

Compared with the conventional full-wave-simulator-based
modeling methods, the proposed method significantly accel-
erates each modeling process and reduces the computational
costs. Although initial data collection and model training
require time and computational costs, the proposed method
shows superior long-term efficiency as the number of design
tasks increases, outperforming the existing methods. The tra-
ditional full-wave-simulator-based modeling approaches repet-
itively perform meshing and solve Maxwell’s equations to
model an EM structure for each setting of geometric parame-
ters, incurring redundant time and computational costs. In con-
trast, the proposed method effectively resolves the modeling
of the EM structure by developing a surrogate model trained
on representative simulation data, thereby enhancing the long-
term efficiency by eliminating the unnecessary repetitive time
and computation costs.

B. Increasing Complexity and Dimensionality

The modeling of a multi-resonant bandpass filter with
increasing complexity and dimensionality is investigated to
validate the proposed method.

A multi-resonant bandpass filter presented by Yang et al.
in [39] is modeled in Implementation C to validate the
flexibility and robustness of the proposed method. As shown
in Fig. 7, it consists of three metal layers, which are etched
on two substrate layers of Rogers RO4003C with relative
permittivity of ¢, = 3.38 and loss tangent of tand = 0.0027.
The top and bottom metal layers are two centrosymmetric
feeding structures. Each feeding structure is an open-ended
two-order microstrip line. The middle layer is composed of a
cross-shaped slot etched on a rectangular metal plane. A wide
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Fig. 7. Multi-resonant bandpass filter in Implementation C. (a) 3D view. (b)
Top and bottom metal layers. (c) Middle metal layer.

TABLE V
TwO DIFFERENT FREQUENCY CONDITIONS AND CORRESPONDING
GEOMETRIC PARAMETERS IN IMPLEMENTATION C: MULTI-RESONANT
BANDPASS FILTER

Condition
C1 C2
Range (GHz) [0.5, 3.5] 4, 28]
Frequency Points 61 241
T [0.1,10.7] | [1.3,2.3
Geometric Im [19.8,21.2] 1.9,3.0
Parameters Wiy, [3.3,4.5] 0.7,1.3
(Unit: mm) Is1 [11.5,12.5] 1.3,2.1
Is 2, 3] 11,17
To3 [9.5,105] | [1.2,1.8
Ws 12,1.8 02,05
Wa1 03,07 02,04
h 1.5 0.5
I 45 7
I, 35 6
wy 1.5 0.5

passband filtering performance with multiple resonances is
generated. The filter’s reflection coefficient |S;| is optimized
by tuning 12 geometric variables (L, Ly, Wiy, Ls1, Lsa, Lss,
Ws, Wi, h, Iy, 1y, and wy), with other geometric parameters
fixed at constant values.

Table V exhibits two different frequency conditions, C'1
from 0.5GHz to 3.5GHz with 61 points and C2 from
4 GHz to 28 GHz. Correspondingly, distinct tuning ranges are
assigned for the geometric parameters in C'1 and C2. 180 pairs
of geometric parameters and |S11| are collected through Latin
Hypercube Sampling and full-wave simulation. Each |Si1]
sample is of size 61 in C'1 and 241 in C2, respectively. The
180 data samples under each condition are arbitrarily divided
into training, validation, and testing datasets in the ratio of
10 : 3 : 5 under a random seed: DSL. . DSL, and DL, in
C1; DG, . D2 and D2, in C2, respectively.

Four existing methods, Gaussian process regression, kriging,
support vector regression, and neural networks, are utilized to
model the filter for comparison. The existing methods have
difficulty in establishing an integrated model that incorporates
samples in both C'1 and C'2. Separate experiments and models
are assigned: C{, C¥, C, and C} in C1; CY, Ck, C3, and
C% in C2, as listed in Table VI. During these experiments,
the geometric parameters and |S11| are normalized. Each data
sample has the output size of 61 in C'1 and 241 in C'2, while
the input size is fixed at 12. Similarly, each neural network



TABLE VI
COMPARATIVE RESULTS IN IMPLEMENTATION C: MULTI-RESONANT BANDPASS FILTER

Trained Optimized Hyperparameters Test Loss (x10—2) on
Exp. on Model Ne [ Ny | Ir [ Ny [ Non]| [Na1,Nua, -] DiL D2,
Ci] GPR — 0.55 23.87
CY Kri. — 0.62 10.62
C7 Dl SVR — 0.24 14.24
cr train NN 1000 | 13000 | 0.0001 8 4 [32, 32,256, 16] 0.51 17.56
C7 Pro. 600 7200 0.001 549 4 (16,256, 32, 2506] 0.65 9.78
ng GPR — 19.46 0.96
C¥ Kri. — 17.63 1.01
C5 pe2. SVR — 15.83 1.34
cy train NN 600 7200 0.001 9 3 [256, 64, 256] 6.21 2.00
%4 Pro. 1000 | 13000 0.001 1928 4 [256, 128, 256, 128] 8.31 2.36
CT
train
CPy & Pro. 1500 | 43500 0.001 200 2 (256, 32] 1.75 2.20
Note Extl;a 7;Telfers to the experiment index; GPR refers to Gaussian process regression;

Kri. refers to kriging;

NN refers to neural networks;

N, refers to the number of epochs;

Ir refers to the learning rate;

Ny, refers to the number of hidden layers;

model’s hyperparameters are optimized using Bayesian opti-
mization. Table VI records the test losses of the eight models
on DE! and DC2,. Testing CY**" on DCL, or testing
C9F*™ on DS2, assesses the interpolation accuracy; testing
CoF*" on DO2, or testing C¢**™ on DZL, measures the
extrapolation accuracy. The testing procedure is similar to that
of Implementation A and is therefore omitted for simplicity.
As shown in Table VI, the kriging model (CF¥) under the
C1 condition realizes the highest extrapolation accuracy on
D¢2, under the C2 condition. However, the kriging model’s
performance (C%) under the C?2 condition severely deteriorates
when extrapolating on D!, under the C'1 condition. Con-
versely, the neural network model (C%) under the C'2 condition
obtains the highest extrapolation accuracy on D!, under
the C'1 condition, but C}" under the C'1 condition exhibits
significant degradation when extrapolating on D2, under the

C'2 condition.

In experiments C7 and C%, two proposed models are
separately trained under C'1 and C2, respectively. Their hyper-
parameters are optimized within similar tuning ranges using
Bayesian optimization. The proposed method’s generalizabil-
ity is validated by comparing C? with C¥"***"™ and comparing
C¥ with CJ kism respectively. As shown in Table VI, the
existing methods sometimes perform well under one condition,
but their extrapolation ability might severely deteriorate when
switching to another condition. Compared with them, the pro-
posed method achieves balanced extrapolation accuracy under
both conditions C'1 and C2, with comparative performance
with kriging under C'1 and with neural networks under C?2.

Superior to the existing approaches, the proposed method
enables an integrated model that leverages training samples
e c1 C2 P

under both conditions, Dy .., and D 2. . referred to as C7y
in Table VI. As it scales up from C? or C%, C?, significantly
reduces the maximum modeling error, which demonstrates

enhanced scalability for variable frequency conditions.

SVR refers to support vector regression;
Pro. refers to the proposed method;

Ny refers to the number of gradient steps;
Ny, refers to the batch size;

[any N7L27 o

-] refers to the number of neurons in each hidden layer.

VI. CONCLUSION

This paper introduces a unified frequency-wise electromag-
netic (EM) modeling framework to enhance generalizability
and scalability for variable frequency conditions. The proposed
method addresses the limitations inherent in existing modeling
techniques, which suffer from deteriorated accuracy under
unseen frequency conditions and require multiple separate
models for different frequency conditions. Integrating a novel
frequency-wise learning strategy, our approach enforces a ro-
bust understanding of the EM similarity and non-linear propor-
tioning characteristics, hence improving generalizability and
scalability for variable frequency conditions. The effectiveness
of the proposed framework is demonstrated through multiple
implementations involving increased solving dimensionality
and variable frequency conditions. Compared with the exist-
ing methods, including Gaussian process regression, kriging,
support vector regression, and neural networks, the proposed
framework outperforms with respect to generalizability and
scalability. It has the potential to develop a powerful large-
scale EM model by incorporating significant frequency con-
ditions, thereby greatly accelerating the design and optimiza-
tion processes in diverse EM applications. Future work may
leverage its capabilities to encompass other EM problems and
extend generalizability and scalability for diverse geometric
topologies.
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