
1

Optimal Packing for Encrypted and Compressed
Key-Value Stores with Pattern-Analysis Security

Chen Zhang, Shujin Ye, Hai Liu, and Tse-Tin Chan, Member, IEEE

Abstract—Rising concerns about data privacy and volume
have driven the development of encrypted and compressed key-
value (KV) storage systems. To defend against pattern-analysis
attacks, the length and access frequency distributions of packs
should appear uniform to adversaries. The design of the packing
algorithm is crucial because it determines both pack length
and frequency distributions, thereby impacting the overhead for
hiding pack pattern information. Existing algorithms focus on
minimizing length differences, leading to large variations in pack
frequency and thus causing large bandwidth overhead. In this
paper, we study the optimal packing problem for encrypted
and compressed KV stores, aiming to minimize the overheads
for protecting both pack length and frequency information. We
propose DualPacking, a two-dimensional packing algorithm with
an approximation ratio that depends on the length and frequency
distributions of KV pairs. We further develop an encrypted and
compressed KV storage system that adapts well to dynamic
updates of outsourced stores. Finally, we formally analyze the
security of our design and implement it on Redis and RocksDB.
Experimental results indicate that, compared to existing packing
algorithms, our design reduces the bandwidth overhead by up
to 25% and the storage overhead for pack length protection by
33%, confirming its superior efficiency.

Index Terms—Encryption, compression, key-value store, pack-
ing algorithm, pattern-analysis security

I. INTRODUCTION

Key-Value (KV) [1]–[3] stores are widely recognized as
high-performance data storage systems, playing a critical role
in numerous big data applications [4], [5]. As enterprises
increasingly outsource data applications to the cloud for better
availability and cost-effectiveness, safeguarding sensitive data
on untrusted platforms has gained significant attention. To
mitigate privacy risks, data is typically encrypted before being
outsourced to the cloud [6]–[8]. Furthermore, as data volumes
expand, compression becomes indispensable. It not only re-
duces storage requirements but also improves processing effi-
ciency by optimizing memory utilization [9], [10]. Therefore,
both encryption and compression are essential for the secure
and efficient outsourcing of large-scale data to the cloud.

Some encrypted and compressed KV storage systems have
been developed to integrate encryption and compression with-
out compromising performance [11]–[14]. In these designs,
KV pairs are organized into packs of a certain size, which

C. Zhang and H. Liu are with the Department of Computer Science, The
Hang Seng University of Hong Kong, Hong Kong SAR, China. E-mail:
{czhang, hliu}@hsu.edu.hk.

S. Ye is with the School of Data Science and Engineering, Guangdong
Polytechnic Normal University, China. Email: yeshujin@gpnu.edu.cn.

T.-T. Chan is with the Department of Mathematics and Information Tech-
nology, The Education University of Hong Kong, Hong Kong SAR, China.
E-mail: tsetinchan@eduhk.hk.

are then encrypted and compressed to ensure data privacy
and compression efficiency. However, recent studies on se-
cure cloud storage reveal that encrypted data can still be
vulnerable. Due to variations in pack length and frequency,
adversaries might exploit pattern-analysis attacks, such as
frequency analysis [15] and volume attacks [16], to extract
sensitive information. The exposure of access patterns, along
with prior knowledge of the store, allows adversaries to infer
sensitive content within the encrypted and compressed key-
value store.

To resist pattern-analysis attacks, it is essential to ensure a
uniform distribution of pack lengths and access frequencies
[11], [17]. This is typically achieved by padding all packs to
a consistent length [11] and injecting fake queries to obscure
access frequencies [18], which incurs additional storage and
bandwidth overhead for data outsourcing. Minimizing these
overheads requires a well-designed packing algorithm, as it
directly influences the distribution of pack lengths and fre-
quencies. However, no existing packing algorithms effectively
minimize the cost for smoothing both lengths and frequencies
simultaneously. Recently, a length-first packing algorithm [19]
was proposed to minimize padding overhead by ensuring that
pack lengths are closely aligned. Despite its efficiency, this
approach neglects frequency during packing, leading to large
variations in pack frequency that increase bandwidth overhead
and ultimately result in high data outsourcing costs.

In this paper, we focus on the design of encrypted and
compressed KV storage systems with pattern-analysis security.
We first study the packing problem of KV pairs, aiming to min-
imize the overall cost of data outsourcing while maintaining
pattern-analysis security. To achieve this goal, we analyze the
impact of packing algorithms on storage and bandwidth over-
heads and propose DualPacking, a two-dimensional packing
algorithm. DualPacking considers the overhead for smoothing
both length and access frequency simultaneously while making
packing decisions with global consideration. After that, a
comprehensive analysis of DualPacking is provided to evaluate
its performance. We detail the construction of our proposed
encrypted and compressed KV stores for various operations
such as get, put, and delete. The contributions of this paper
are summarized as follows:

• We formulate the Cost-Efficient and Pattern-Protected
Packing Problem (CEPPP) for encrypted and compressed
KV stores, aiming to minimize the overhead to achieve
pattern-analysis security. To best of our knowledge, we
are the first to formally define the problem.

• We analyze the impact of packing algorithm on storage
and bandwidth overheads and propose a two-dimensional

2

packing algorithm, DualPacking, to solve the CEPPP
problem. It considers both length and frequency protec-
tion during packing.

• We prove that the CEPPP problem is NP-hard and the-
oretically analyze DualPacking, providing both its upper
bound and approximation ratio.

• We develop an encrypted and compressed KV storage
system with pattern-analysis security and analyze its se-
curity. The proposed system is implemented on Redis and
RocksDB. Extensive experimental results demonstrate the
high efficiency of our design.

The rest of the paper is organized as follows. Section II
presents the system model, threat model, and target problem.
Section III formulates the packing problem of KV pairs. In
Section IV, we detail the proposed DualPacking algorithm
and provide a comprehensive performance analysis. Section
V discusses detailed construction of the proposed encrypted
and compressed KV store. The security analysis is provided
in Section VI. Section VII evaluates the performance of our
design. Related work is reviewed in Section VIII. Finally, we
conclude the paper in Section IX.

II. PROBLEM DEFINITION

A. System Model

Fig. 1 depicts the architecture of our encrypted and com-
pressed KV storage system, which includes three entities:
users, the proxy, and the cloud service provider (CSP).

• Users: Users in an institution outsource their data to the
CSP via the proxy, allowing them to access it by issuing
queries through the proxy.

• Proxy: The proxy resides within the same internal net-
work as users, acting as an intermediary between users
and the external CSP. Its duties include initializing en-
crypted and compressed KV stores and handling query
execution on behalf of users.

• Cloud service provider: The CSP provides cloud storage
and data access services to users within the institution.

Users Proxy

Query

Plaintext KV pair
Cloud service provider

Encrypted data pack

Query

Fig. 1: System architecture

The data uploaded to the proxy is organized into a KV store
D. The proxy initializes D into an encrypted and compressed
KV store D̂ and outsources D̂ to the CSP. To ensure efficient
compression, the proxy divides KV pairs in D into packs [11]
and then encrypts each pack with its secret key. For ease of
data retrieval, each encrypted and compressed pack is assigned
a pack identifier (referred to as pid). Users access the data in
the CSP via the proxy, utilizing standard KV store operations
such as get, put, and delete. The notations used in this paper
are summarized in the TABLE I.

As shown in Fig. 1, the data flow between users and the
proxy is in plaintext, with data exchanged as KV pairs. The
data flow between the proxy and the CSP is in ciphertext, with

TABLE I: Summary of notations.

Notation Description
D, D̂ original KV store, encrypted and compressed KV store
I key-pid index maintained by the proxy
P set of packs grouped from D
n number of KV pairs in D
m number of packs in P
xi,j xi,j = 1 if KV pair i ∈ D is allocated in pack j ∈ P;

otherwise xi,j = 0

li, fi length, access frequency of KV pair i ∈ D
Lmax length of the longest pack
Fmax frequency of the pack with the largest access frequency
r average compression ratio

Cst storage overhead for outsourcing D
Cbw bandwidth overhead for data access
C overall cost of data outsourcing
L⋆ optimal pack size
β weight factor of bandwidth overhead
D user query distribution over keys in D
De estimated user access distribution maintained by the proxy
Lk total length of KV pairs assigned to the k-th pack
L1
k cumulative length of KV pairs up to the k-th pack

Fk total frequency of KV pairs assigned to the k-th pack
F 1
k cumulative frequency of KV pairs up to the k-th pack

data exchanged as encrypted and compressed packs. The proxy
maintains a key-pid index I. When the proxy receives a user
query request, it looks up I and sends the pid corresponding
to the queried key to the CSP. The CSP, using the pid, retrieves
and sends back the specified data pack to the proxy. The proxy
then decrypts and decompresses the pack, extracts the required
KV pair, and returns the result to the user.

Suppose user queries on keys in D follow a distribution D,
which can vary over time. Let D(k) represent the probability
of querying a specific key k. Consistent with previous designs
[17]–[19], we consider the scenario where user queries are
drawn independently from D. Since all user queries are routed
through the proxy to the CSP, the proxy can maintain an
estimate of the user access distribution De. With De and the
key-pid index I, the access frequency distribution of packs
can be calculated by the proxy.

B. Problem Definition

In secure and compressed KV stores, KV pairs are grouped
into packs of a certain size, which are subsequently encrypted
and compressed. Since KV pairs may vary in length and access
frequency, the length and frequency distributions of packs
transmitted between the proxy and CSP may be non-uniform,
making the store vulnerable to pattern-analysis attacks [19].

In this paper, we focus on designing encrypted and com-
pressed KV stores with pattern-analysis security. The store
must ensure that adversaries cannot infer any unauthorized
information by observing the traffic between the proxy and the
CSP, while minimizing the overall cost of data outsourcing.
The overall cost of data outsourcing includes both storage
overhead in the cloud and bandwidth overhead for data access.
Protecting pack length information incurs additional storage

3

overhead for data padding, while protecting pack access fre-
quency information results in extra bandwidth overhead for
fake query transmission. To minimize these overheads, the
design of the packing algorithm is crucial, as it determines
the length and frequency distribution of packs. Our goal is
to develop a packing algorithm that minimizes the overhead
incurred by the protection of pack length and frequency.

C. Threat Model

Consistent with previous designs [12], [18], we assume
that the proxy and users are honest and operate within a
trusted internal network. The proxy reliably initializes the
store outsourced to the CSP, executes user queries, and re-
turns results to users. The CSP is considered to be honest-
but-curious, meaning it follows predefined protocols but is
curious about the data it hosts. We assume both the CSP
and external attackers are passive persistent adversaries with
the knowledge of the distribution of key lengths and access
frequencies in the outsourced store. They can only eavesdrop
on the traffic between the proxy and the CSP, and have no
ability to decrypt or modify the transmitted data. Additionally,
adversaries cannot query any data in the CSP by controlling
the users.

III. PROBLEM FORMULATION

A. Overall Cost of Data Outsourcing

To protect the encrypted and compressed KV stores against
pattern-analysis attacks, we need to hide the length and access
frequency information of KV pairs, which incurs additional
overhead. In this work, we consider two types of overheads
associated with designing the encrypted and compressed KV
store with pattern-analysis security: 1) storage overhead for
storing data in the cloud; and 2) bandwidth overhead for
transmitting data between the proxy and the CSP.

Storage overhead: The storage overhead is defined as
the total size of the encrypted and compressed KV store
outsourced to the cloud. Given a KV store D with n KV pairs,
the proxy groups KV pairs into packs and then compresses
each pack. To protect pack length information, all compressed
packs are padded to the longest size before encryption. We
assume that the encryption operation does not change the data
size. Let P denote the set of packs grouped from D, which
includes m packs. Let xi,j = {0, 1} denote the allocation of
KV pair i ∈ D in the pack j ∈ P . If KV pair i is assigned to
the pack j, then xi,j = 1, otherwise xi,j = 0. Let li denote the

length of KV pair i. Lmax = max
j∈P

(∑
i∈D

xi,j li

)
represents the

length of the longest pack. r denotes the average compression
ratio of D using the compression algorithm c under pack size
Lmax. We assume that the largest pack before compression
remains the largest after compression. With r, Lmax, and m,
the cost for storing D with length protection is defined as

Cst =
mLmax

r
. (1)

Bandwidth overhead: The bandwidth overhead is mea-
sured by the amount of data transmitted per user query. Since

KV pairs are stored in encrypted and compressed packs and
the CSP has no ability to decrypt the data, the CSP needs
to return the entire pack to the proxy for each user query on
the key. Meanwhile, because KV pairs in D may differ in
access frequency, the pack access frequency distribution can
be non-uniform, potentially leaking the frequency information
of these KV pairs. To hide the frequency of packs, the
typical method is to include fake queries to disturb the pack
frequency distribution and make it uniform. Let fi denote the
expected access frequency of KV pair i. The frequency of the
pack with the largest access frequency can be calculated as

Fmax = max
j∈P

(∑
i∈D

xi,jfi

)
. Given Fmax for the dataset D,

considering the protection of pack frequency information, the
bandwidth overhead between the proxy and the CSP for data
access can be defined as

Cbw =
mFmaxLmax

nr
. (2)

With Cst and Cbw, the overall cost of outsourcing the store
D compressed using algorithm c is

C = Cst + βCbw =
nmLmax + βmFmaxLmax

nr
, (3)

where the weight parameter β > 0. It is used to adjust the
impacts of bandwidth and storage overhead on the overall cost.

B. Problem Formulation

Given a KV store D outsourced by users, where the length
and access frequency information of KV pairs are known, the
proxy groups the store into a set of packs P and compresses
each pack using the algorithm c. Additional overhead is
incurred to protect the length and frequency information of
KV pairs. Our goal is to design a packing algorithm that
minimizes the overall cost of outsourcing D to the cloud while
protecting the access patterns of D. The Cost-Efficient and
Pattern-Protected Packing Problem (CEPPP) can be defined
as below.

Definition 1. The Cost-Efficient and Pattern-Protected Pack-
ing Problem (CEPPP) for outsourcing an encrypted and
compressed KV store can be formulated as the following
optimization problem:

min
xi,j ,i∈D,j∈P

C (4)

s.t. Lmax ≤ L⋆,∀j ∈ P, (5)
xi,j ∈ {0, 1},∀i ∈ D,∀j ∈ P, (6)∑
j∈P

xi,j = 1,∀i ∈ D. (7)

The constraint corresponding to Eq. 5 specifies that the size
of each pack must be smaller than or equal to the optimal
pack size, denoted as L⋆. Previous studies have discussed the
calculation of the optimal pack size [14]. In this paper, we
assume that L⋆ is known for given system parameters. The
constraints corresponding to Eq. 6 and Eq. 7 ensure that each
KV pair is uniquely assigned to a pack.

Theorem 1. The optimization problem CEPPP is NP-hard.

4

Proof. We prove the NP-hardness of CEPPP by a polynomial-
time reduction from the classical 0-1 Knapsack problem,
which is known to be NP-complete. The 0-1 Knapsack prob-
lem is defined as selecting a subset of items, each with a given
positive weight, to fit into a knapsack with limited capacity,
such that the total weight of the selected items is maximized
without exceeding the capacity. We construct a reduction from
an instance of the 0-1 Knapsack problem to a special case
of CEPPP under the following constraint assumptions: (1)
The weight parameter β = 0, i.e., restrict the objective to
minimizing the maximum pack length without considering the
bandwidth overhead; (2) All KV pairs must be allocated to
exactly two packs; (3) The total length of all KV pairs is
denoted by L =

∑n
i=1 li, where li represents the length of

KV pair i; and (4) No single pack has sufficient capacity to
accommodate all KV pairs.

redUnder the formulation, the objective of CEPPP is to
partition a set of KV pairs into two packs to minimize the max-
imum pack length, Lmax. It can be observed that minimizing
Lmax is equivalent to balancing the pack lengths as closely as
possible to L/2. Given the constraint that all KV pairs must
be allocated, minimizing Lmax corresponds to identifying a
subset of KV pairs whose cumulative length approaches but
does not exceed L/2. This formulation can be transformed
into the 0-1 Knapsack problem: given a collection of items
(KV pairs) with positive lengths (weights), determine a subset
with maximum total length not exceeding L/2. Thus, resolving
this restricted instance of CEPPP is at least as computationally
complex as solving the 0-1 Knapsack problem, which is NP-
complete. Since this reduction is computable in polynomial
time, and CEPPP encompasses this special case, we conclude
that CEPPP is NP-hard.

IV. OPTIMAL PACKING OF KV PAIRS FOR ENCRYPTED
AND COMPRESSED KV STORES

A. Design Overview

The key to addressing the CEPPP optimization problem
is to design an efficient packing algorithm. The design of
packing algorithm affects the distribution of pack lengths and
frequencies, thereby affecting the cost incurred for hiding pack
lengths and frequencies. The length-first packing algorithm
[19] aims to make the lengths of all packs as close as possible,
thereby minimizing the overhead of padding all packs to the
same length. However, this approach incurs high bandwidth
overhead due to the need to inject more fake queries to
smooth the frequencies. Similarly, the frequency-first packing
can minimize the maximum difference of pack frequencies,
which reduces the cost of frequency smoothing but increases
the storage cost of padding all packs to the same length.
Thus, in the design of packing algorithm, it is critical to
consider pack length and frequency simultaneously to achieve
an optimal balance between storage and bandwidth overhead.

To minimize the overall cost of data outsourcing, all packs
should have small variances over both lengths and frequencies.
Given a KV store D, suppose KV pairs are divided into m
packs in total. If we normalize the length and frequency of KV

pairs, the most ideal packing solution is to make the length
and frequency of each pack equal to 1

m . To achieve this goal,
a straightforward idea (referred to as a greedy design) is to
select, each time, the KV pair that best moves the length and
frequency of the current processing pack towards 1

m . However,
such a design does not consider the impact of unassigned KV
pairs, making the solution prone to getting stuck in a local
optimum and potentially causing KV pairs to be packed into
more packs than necessary.

In real-world applications, the frequency of packs usually
follows the long-tail distribution [17], i.e., the access frequency
of most packs is similar and low. Focusing solely on selecting
unassigned KV pairs that move the length and frequency
towards 1

m most effectively may result in many low-frequency
KV pairs being left over, since each pack has a maximum
length restriction. This can lead to a significant number of
KV pairs with low access frequency remaining unassigned.
Consequently, the frequency of several of the last packs may
be low, which greatly increases the overhead associated with
protecting pack access frequency.

In this work, we propose DualPacking, a two-dimensional
packing algorithm designed to minimize the overhead for
smoothing pack length and frequency. In DualPacking, we
consider the overhead of smoothing both length and frequency
simultaneously while making packing decisions with a global
consideration. Specifically, we take into account not only the
length and frequency of each pack being processed but also the
cumulative length and frequency of already packed packs. This
approach helps avoid large variances in length and frequency
between the later packed packs and the earlier ones. The toy
example shown in Fig. 2 demonstrates that, compared to the
greedy design, DualPacking can significantly reduce variances
in lengths and frequencies among packs.

In the following subsections, we first present the detailed
design of DualPacking, followed by a description of the
protection methods for pack length and frequency. Finally, we
provide an analysis of DualPacking to evaluate its efficiency.

B. DualPacking: Two-Dimensional Packing Algorithm

The goal of DualPacking is to efficiently allocate KV pairs
into packs to approximate a target pack length L⋆ while
keeping both the lengths and frequencies of all packs as
uniform as possible. To enable better comparison between
pack length and frequency, the length and frequency of all
KV pairs are first normalized. In DualPacking, KV pairs are
assigned one by one to packs, and a new pack is initiated once
the cumulative length of the current pack exceeds L⋆.

Suppose the current pack being processed is pk. The core
of DualPacking’s decision logic lies in the selection of which
unassigned KV pair to add to pk. Two factors are considered
during packing: 1) the total lengths and frequencies of KV
pairs assigned to pk, denoted by Lk and Fk, and 2) the cumu-
lative lengths and frequencies of KV pairs already allocated
into packs, denoted by L1

k and F 1
k . The consideration of L1

k

and F 1
k enables global optimization rather than focusing on a

single pack. DualPacking is guided by evaluating two binary
conditions: whether L1

k ≥ F 1
k and whether Lk ≥ Fk. The

5

key value length l frequency f

k1 v1 25 0.30

k2 v2 14 0.14

k3 v3 10 0.15

k4 v4 15 0.05

k5 v5 11 0.06

k6 v6 25 0.30

key value l f

k1 v1 0.25 0.30

k2 v2 0.14 0.14

k3 v3 0.10 0.15

k4 v4 0.15 0.05

k5 v5 0.11 0.06

k6 v6 0.25 0.30

pack l f

0.25 0.30

0.25 0.20

0.25 0.30

0.25 0.20

k1 v1

k2 v2

k5 v5

k3 V3

k4 v4

k6 v6

Normalization

DualPacking

pack l f

0.25 0.30

0.25 0.30

0.24 0.29

0.15 0.05

0.11 0.06

k1 v1

k6 v6

k2 V2

k3 v3

k4 v4

k5 v5

Each pack size: 25 bytes

Number of packs: 5

#fake queries:50 (#real query=100)

Each pack size: 25 bytes

Number of packs: 4

#fake queries: 20 (#real query=100)

Fig. 2: Toy example of DualPacking.

interplay of these two conditions yields four distinct cases
that guide the selection strategy. By evaluating the current
case, DualPacking strategically chooses a KV pair that not
only progresses pk towards the target length L⋆ but also
counteracts any existing imbalance between cumulative length
and frequency. This ensures that a global balance between
total length and frequency is maintained throughout the entire
packing process.

Algorithm Description: The details of DualPacking is
shown in Alg. 1. Given a KV store D, we first normalize
the length and frequency of all KV pairs separately, as shown
in Lines 2-4. DualPacking is structured into two main parts,
addressing cases where L1

k ≥ F 1
k and L1

k < F 1
k , respectively.

Within each of these main parts, we further divide the problem
into two subcases based on the values of Fk and Lk. It is
important to note that, for each KV pair, two requirements
must be met before assigning it to a pack: 1) the KV pair
has not been assigned to any pack yet; and 2) the size of the
currently processing pack will not exceed L⋆ after including
the KV pair. We now describe DualPacking based on the
aforementioned case division.

Case 1: L1
k ≥ F 1

k

• Subcase 1.1: Lk < Fk. Let C denote the set of can-
didate KV pairs that can be assigned to the currently
processing pack pk. Under this subcase, the KV pairs
added to C must meet two conditions. Firstly, their length
values exceed their frequency values. This condition helps
minimize the difference between the total length and
frequency allocated to the pack. Secondly, after alloca-
tion, the relationship between Lk and Fk should remain
unchanged, thereby decreasing the difference between L1

k

and F 1
k . After determining C, DualPacking selects the KV

pair with the highest length value in C for allocation.

Algorithm 1: DualPacking
Input: KV store D, optimal pack size L⋆.
Output: The set of packs P .

1 k ← 1; L1
k ← 0; F 1

k ← 0; R ← D; L⋆ ← L⋆/
∑

i∈D li;
2 for each i ∈ D do

// Normalization
3 li ← li/

∑
i∈D li;

4 fi ← fi/
∑

i∈D fi;

5 while R ≠ ∅ do
6 Flag ← True;
7 Lk ← 0; Fk ← 0;
8 while flag do
9 C ← {i | i ∈ R ∧ Lk + li ≤ L⋆};

10 if L1
k ≥ F 1

k then
// Case 1

11 if Lk < Fk then
// Subcase 1.1

12 C ← C ∩ {i | i ∈ R ∧ (li > fi ∨ fi ≤
L⋆) ∧ Lk + li < Fk + fi};
// KV pair candidate set

13 else
// Subcase 1.2
C ← C ∩ {i | i ∈ R ∧ li ≤ fi};

14 else
// Case 2

15 if Lk ≤ Fk then
// Subcase 2.1
C ← C ∩ {i | i ∈ R ∧ li > fi};

16 else
// Subcase 2.2
C ← C∩{i | i ∈ R∧L1

k+ li ≥ F 1
k +fi};

17 if C ̸= ∅ then
18 if L1

k ≥ F 1
k and Lk ≥ Fk then

19 i∗ ← argmaxi∈C fi;
20 else
21 i∗ ← argmaxi∈C li;

22 Add KV pair i∗ in the k-th pack of P;
23 Lk ← Lk + li∗ ; Fk ← Fk + fi∗ ;
24 L1

k ← L1
k + li∗ , F 1

k ← F 1
k + fi∗ ;

25 R ← R− {i∗};
26 else
27 flag ← false; k ← k + 1;

• Subcase 1.2: Lk ≥ Fk. DualPacking prioritizes selecting
the KV pair with the highest frequency value among those
where their frequencies exceed their corresponding length
values for assignment to a pack.

Case 2: L1
k < F 1

k

• Subcase 2.1: Lk ≥ Fk. DualPacking selects the KV pair
with the highest length value among those where the
length values exceed the frequency values for assignment.

• Subcase 2.2: Lk < Fk. Under this subcase, DualPacking
selects the KV pair with the highest length value among

6

those where the sum of their frequency values and Fk is
less than the sum of their length values and Lk.

Toy example: Fig. 2 illustrates the process of packing a KV
store with 6 KV pairs using DualPacking. The optimal pack
size L⋆ is set to 25. The first step of packing is normalization
and L⋆ is normalized to 0.25. Initially, L1

1 = 0;F 1
1 =

0;R = {k1v1, k2v2, k3v3, k4v4, k5v5, k6v6}. We start by the
construction of pack 1. In the first iteration, since (L1

1(0) ≥
F 1
1 (0))&(L1(0) < F1(0)), subcase 1.1 is fulfilled. Thus, the

candidate KV pair set C = {k1v1, k6v6}, and the KV pair
argmax li = argmax(l1, l6) = k1v1 is assigned to pack 1.
Parameters could be updated as L1 = 0.25, F1 = 0.30, L1

1 =
0.25, F 1

1 = 0.30,R = {k2v2, k3v3, k4v4, k5v5, k6v6}.
In the second iteration, the candidate set C = ∅, it

means pack 1 already capacity full, the packing of pack 1
ends. For the construction of pack 2, initially L2 = 0 and
F2 = 0. In iteration 1, L1

2(0.25) < F 1
2 (0.3)&L2(0) ≤

F2(0), subcase 2.1 is fulfilled. Then C = {k4v4, k5v5}.
argmax li = argmax(l4, l5) = k4v4 is assigned to pack 2.
Then L2 = 0.15, F2 = 0.05, L1

2 = 0.40, F 1
2 = 0.35,R =

{k2v2, k3v3, k5v5, k6v6}. In iteration 2, L1
2 ≥ F 1

2&L2 ≥ F2,
subcase 1.2 is fulfilled. C = {k3v3} and then k3v3 is assigned
to pack 2. L2 = 0.25, F2 = 0.20, L1

2 = 0.5, F 1
2 = 0.5. For the

next iteration, C = ∅, which means the end of the packing
of pack 2. Following this way, k6v6 is packed in pack 3 and
{k5v5, k2v2} are assigned in pack 4. The packing process ends
when all KV pairs assigned into packs.

Time complexity We now analyze the worst-case time com-
plexity of Alg. 1. The normalization step requires O(n) time.
During each iteration of the outer while loop, the algorithm
constructs a new pack by iteratively selecting eligible KV pairs
from the remaining set. In the worst case, constructing each
pack involves scanning all remaining KV pairs to build the
candidate set C and selecting the best item via an argmax
operation, each requiring O(n) time. Since there are at most
n such iterations (each KV pair is packed once), the overall
time complexity of the algorithm is O(n2).

C. Length and Frequency Protection for Packs
With DualPacking, KV pairs are grouped into a set of packs

P . Each pack is compressed and then encrypted. To protect
the distribution of pack length, all encrypted and compressed
packs are padded to the size of the longest pack among all
packs in P . For the protection of pack frequency distribution,
we adopt a randomized process to smooth the distribution to
be uniform.

Real queries refer to the user queries on packs, while fake
queries are those injected to hide the real query distribution.
Let Dp

e and Dp
f denote the real and fake query distribution. Let

Dp
t be the target uniformed pack access distribution, where

Dp
t (IDP) = 1

m for all packs P ∈ P . IDP is the pid of P .
According to [17], real queries and fake queries are mixed in
a proportion α (0 < α ≤ 1) to ensure the following convex
combination always holds.

αDp
e + (1− α)Dp

f = Dp
t . (8)

For each user query on a key, the queried key is mapped
to a pid according to the key-pid index I maintained by the

proxy. With the pid, an α-based coin is flipped, which returns
heads with probability α. If the coin returns heads, the query
is sent to the CSP; otherwise, a query generated from Dp

f is
used, and the coin is repeatedly flipped until it returns heads.
The value of α affects the bandwidth overhead incurred for
protecting pack frequency information. The larger α, the fewer
fake queries are injected, resulting in less bandwidth overhead.
In our design, we set

α =
1

Fmaxm
, (9)

which is the largest value that can ensure Dp
f is always greater

than 0 for all packs. According to Eq. 8, Dp
f is computed as

Dp
f (IDP) =

Fmax −Dp
e(IDP)

Fmaxm− 1
,∀P ∈ P. (10)

Remarks: The frequency protection method described
above ensures all packs have uniform access frequency, provid-
ing strong protection for the outsourced KV store. Please note
that our design can be easily extended to K-indistinguishable
frequency smoothing [19] to further reduce the bandwidth
overhead at the cost of reduced system security. Users can
select the most appropriate smoothing methods based on their
specific data security requirements.

D. Algorithm Analysis

In this subsection, we will deduce the lower bound of
the proposed DualPacking algorithm. We first analyze pack
frequency and deduce its lower bound (to be discussed in
Lemma 1). After that, we analyze the number of packs m
and provide its upper-bound (discussed in Lemma 2). Based
on the analysis results, the approximation ratio of DualPacking
is given.

Lemma 1. For DualPacking, the maximum sum of the fre-
quencies of all KV pairs in a pack Fmax does not exceed
fmax +

λ
τ L

⋆, where λ = 1∑
i∈D li

, and τ = 1∑n
i=1 fi

, fmax =

maxi∈D{fi}.

Proof. We now analyze the processing process of Dual-
Packing. Before packing, we first normalize the lengths and
frequencies of KV pairs as numerical values without units,
setting f ′

i = λfi and l′i = τ li, which implies
∑

i∈D f ′
i =∑

i∈D l′i = 1. The length constraint for any pack is then
defined as L⋆′ = λL⋆.

Suppose the current pack being processed is pack Pk. Let
Pk be the set of KV pairs assigned to pack Pk, and Rk be the
set of unassigned KV pairs after the assignment of pack Pk,
satisfying Rk−1 = Rk ∪ Pk. Given a KV pair q with f ′

q >
2L⋆′, q is assigned to pack Pk if it meets three conditions:
1) L1

k−1 ≥ F 1
k−1; 2) f ′

q ≥ f ′
i , ∀i ∈ Rk−1; and 3) l′i ≥ f ′

i

∀i ∈ Pk − {q}.
For the first condition, if L1

k−1 < F 1
k−1, DualPacking

ensures
∑

i∈Pk
l′i ≥

∑
i∈Pk

f ′
i (noting that L1

0 = F 1
0 = 0).

Since
∑

i∈Pk
l′i ≤ L⋆′, we have f ′

q ≤ L⋆′, which contradicts
f ′
q > 2L⋆′. Based on this condition, DualPacking selects the

KV pair with the highest frequency from the unassigned KV
pairs set Rk−1, making the second condition self-evident. For

7

the third condition, if L1
k−1 ≥ F 1

k−1, then Lk ≤ Fk, i.e.,
L1
k−1 − F 1

k−1 ≥ L1
k − F 1

k . Since
∑

i∈Pj
l′i ≤ L⋆′,∀j ∈ P , we

have L1
k−1 ≤ F 1

k−1 + L⋆′. After assigning KV pair q to pack
k, we can obtain:

L1
k−1+

∑
i∈Pk

l′i ≤ L1
k−1+L⋆′ ≤ F 1

k−1+L⋆′+L⋆′ ≤ F 1
k−1+f ′

q.

Thus, any other KV pair assigned to pack k must satisfy l′i ≥
f ′
i ,∀i ∈ Pk − {q}. Based on the above three conditions, we

can deduce

f ′
q +

∑
i∈Pk−{q}

f ′
i ≤ f ′

q + L⋆′ =⇒
∑
i∈Pk

f ′
i ≤ f ′

max + L⋆′,

where f ′
max = λfmax. Thus, the lower bound of pack frequency

using DualPacking is

Fmax ≤ fmax +
λ

τ
L⋆.

Lemma 2. The number of packs m in DualPacking does
not exceed ⌈ 2

∑
i∈D li
L⋆ − 1

3g⌉ under the mild condition li ≤
1
2L

⋆,∀i ∈ D, where g =
∑

i∈P′⌊ τfi−λL⋆

λL⋆ ⌋ and P ′ = {i|fi ≥
2λ
τ L

⋆},∀i ∈ D.

Proof. We assume that the KV pairs assigned to each pack j ∈
P satisfy

∑
i∈Pj

l′i ≤ 1
2L

⋆′ and L1
j < F 1

j . Since
∑

i∈D f ′
i =∑

i∈D l′i, there must exist a KV pair q with l′q ≥ f ′
q and q ∈

Rj . Based on the assumption that l′q ≤ 1
2L

⋆′, KV pair q must
be assigned to pack j. It contradicts the fact that q ∈ Rj .
Thus, we conclude that

∑
i∈Pj

l′i ≥ 1
2L

⋆′,∀Pj ⊂ P − Pm. It
can be known that, if change the assumption from L1

j < F 1
j

to L1
j ≥ F 1

j , the same conclusion still holds.
When assigning a KV pair whose frequency greatly larger

than L⋆′ to a pack, subsequent packs must satisfy that the
total length of KV pairs assigned to the pack is greater than
their total frequency until L1

j ≥ F 1
j ,∀j ∈ P . Let Ps denote

the s-th pack being processed during packing process, where
s ∈ {1, 2, · · · ,m}. Thus, there exists some s ∈ {2, · · · ,m−1}
such that for each j ∈ {2, · · · , s}, the sum of the lengths of
the KV pairs in pack Pj satisfies

∑
i∈Pj

l′i ≥
∑

i∈Pj
f ′
i .

Assuming pack j with
∑

i∈Pj
l′i < 2

3L
⋆′ and j ∈

{2, · · · , s}. According to Alg. 1, there must be a KV pair
h with l′h ≥ f ′

h and h ∈ Rj . Because
∑

i∈Pj
l′i <

2
3L

⋆′, we
have l′h > 1

3L
⋆′. In the case of L1

j−1 < F 1
j−1, Alg. 1 assigns

KV pairs to the pack in descending order of length. Therefore,
pack j contains only one KV pair (otherwise,

∑
i∈Pj

> 2
3L

⋆′).
Since the length of any KV pair is less than 1

2L
⋆′, we have∑

i∈Pj
< 1

2L
⋆′, i.e., KV pair h must be assigned to pack j.

This contradicts the conclusion that h ∈ Rj . Therefore, we
have

∑
i∈Pj

l′i ≥ 2
3L

⋆′, ∀j ∈ {2, · · · , s}. On the one hand,

L1
j−F 1

j = L1
j−1−F 1

j−1+
∑
i∈Pj

l′i−
∑
i∈Pj

f ′
i ≤ L1

j−1−F 1
j−1+L⋆′.

On the other hand,

F1 − L1 =
∑
i∈P1

f ′
i −

∑
i∈P1

l′i ≥ f ′
max − L⋆′.

We can obtain s ≥
⌊
f ′

max−L⋆′

L⋆′

⌋
. Thus, there are at least g

packs, and the lengths of the KV pairs assigned to them

are greater than 2
3L

⋆′, where g =
∑

i∈P′

⌊
f ′
i−L⋆′

L⋆′

⌋
=∑

i∈P′

⌊
τ ·fi−λ·L⋆

λ·L⋆

⌋
, and P ′ = {i | f ′

i ≥ 2L⋆′} = {i | fi ≥
2λ
τ L

⋆}, ∀i ∈ D.
Based on the above analysis, we have

1

2
(m− 1− g)L⋆ +

2

3
gL⋆ <

∑
i∈D

li

⇒ m <
2
∑

i∈D li

L⋆
− 1

3
g + 1 ≤

⌈
2
∑

i∈D li

L⋆
− 1

3
g

⌉
.

Theorem 2. Our algorithm is an approximation algorithm
with an approximation ratio of µ

(
1 + 1

n
βfmax

+1

)
under the

mild condition li ≤ 1
2L

⋆, for all i ∈ D, where µ = 2 −
gL⋆

3
∑

i∈D li
+ L⋆∑

i∈D li
.

Proof. Let X∗ be the optimal solution, with z(X∗) represent-
ing the function that returns the objective function value of
X∗. Denote the number of packs in the optimal solution by
m∗ and the maximum sum of the frequencies of KV pairs
placed in the same pack in the optimal solution by F ∗. Let
m′ =

∑
i∈D li
L⋆ . We have:

z(X∗) =
nm∗L∗ + βm∗F ∗L∗

nr

=
m∗L∗ (n+ βF ∗)

nr

≥
∑

i∈D li (n+ βfmax)

nr
.

We also have:

z(X) ≤ mL⋆

r
+

βmFmaxL
⋆

nr

≤
µm′L⋆

(
n+ βFmax

)
nr

.

Therefore, we have:

z(X)

z(X∗)
≤

µm′L⋆
(
n+ βFmax

)∑
i∈D li (n+ βfmax)

=
µ
(
n+ βFmax

)
(n+ βfmax)

≤ µ+
λ
τ µβL

⋆

(n+ βfmax)

In our problem, fmax is much larger than
∑

i∈D fi
m′ . Thus,

z(X)

z(X∗)
≤ µ+

λ
τ µβL

⋆

(n+ βfmax)

= µ+

∑
i∈D fi
m′ µβ

(n+ βfmax)

≤ µ

(
1 +

1
n

βfmax
+ 1

)
.

V. IMPLEMENTATION OF ENCRYPTED AND COMPRESSED
KV STORES WITH PATTERN-ANALYSIS SECURITY

In this section, we detail the construction of the proposed
encrypted and compressed KV storage system. We first intro-
duce the design for handling static stores. Then, we extend the

8

Algorithm 2: Initialization
Input: KV store D, estimated user access distribution

De, secret key of the proxy sk, encryption
algorithm Enc, compression algorithm
Compress, optimal pack size L⋆.

Output: Real query distribution Dp
e over pid, fake

query distribution Dp
f over pid, parameter α,

key-pid index I, encrypted and compressed
KV store D̂.

1 Call Alg. 1 to group KV pairs into a set of packs P;
2 for P ∈ P do
3 Assign a unique number IDP as pid;
4 ĈP ← Enc(sk,Compress(P));
5 Dp

e(IDP) = 0;
6 for each key k in P do
7 Add (k, IDP) into key-pid index I;
8 Dp

e(IDP)← Dp
e(IDP) +De(k);

9 Find the longest pack length L
′ ← maxP∈P |ĈP |;

10 for P ∈ P do
11 Pad ĈP to length L

′
;

12 Add (IDP , ĈP) into index D̂;

13 Outsource D̂ to the CSP;
14 Calculate α according to Eq. 9;
15 Calculate Dp

f according to Eq. 10;

design to support dynamic KV stores, incorporating put and
delete operations while maintaining pattern-analysis security.

A. Construction of Our Design: Static Case

Initialization: Given a KV store D with known length and
access distribution, packing is the first step to initialize the
store outsourced to the CSP. The pack length and frequency
are determined based on the KV pairs assigned to each pack.
After packing, each pack is compressed and then encrypted.
The outsourced store D̂ is in the form of pid and encrypted and
compressed packs. To protect the pack length distribution, all
packs are padded to the longest pack size after compression,
L′, before outsourcing. The proxy maintains the key-pid index
I and calculates the parameter α and fake query distribution
Dp

f to safeguard the pack frequency distribution.
GetKey: As shown in Alg. 3, when the proxy receives a

user query request for a key, it first searches the key-pid index
I to find the corresponding pid. The query is then added to
the query queue Q, which holds all real user queries to be
processed. Once the queried pack is received from the CSP,
the proxy decrypts and decompresses it to obtain the plaintext
pack, returning the value associated with the queried key to
the user.

The proxy follows a randomized process to mix real query
in Q with fake queries, ensuring the pack frequency distribu-
tion observed by adversaries is uniform. As shown in Alg.
4, for each query in Q, the proxy flips an α-biased coin,
denoted by coin. If coin = 1 (the coin returns heads), the
proxy sends the real query to the CSP; otherwise, it sends a

Algorithm 3: GetKey
Input: User query for key k, query queue Q,

decryption algorithm Dec, decompression
algorithm Decompress.

Output: Matched value v.
1 IDP ← I[k]; Add IDP to Q;
2 The proxy follows Alg. 4 to send queries to the CSP;
3 Wait the CSP returns the query result (IDP , ĈP);
4 P ← Decompress(Dec(sk, ĈP));
5 v ← P [k];

fake query sampled from Dp
f and continues flipping the coin

until it returns heads. In the existing design, the last query
must be a real query, potentially leaking pattern information.
To address this, consistent with [17], for the last query in Q,
the proxy randomly selects a batch size r from the batch set
B = { 1α ,

1
α +1, 1

α+2} and sends r queries to the CSP, thereby
protecting query boundary information.

B. Construction of Our Design: Dynamic Case

DeleteKey: Alg. 5 illustrates the process of delete opera-
tions. To protect pack length information, deleted packs are
not directly removed from the outsourced store. The proxy
maintains an index T , which maps a pid to a set of deleted
keys in the pack. When a KV pair (kd, vd) is deleted, the proxy
identifies its pid IDPd

and adds the key to T [IDPd
]. Although

we do not physically delete (kd, vd) from the outsourced store,
the key will not be queried after deletion. Therefore, we update
the real query distribution of IDPd

by subtracting the access
frequency of kd. When the access distribution varies, the fake
query distribution Dp

f and parameter α can be easily adjusted
to ensure that the pack access distribution remains uniform.
For the low utilization problem caused by repeated delete
operations, an efficient solution is to merge non-full packs. By
setting a threshold for packs, once the total length of deleted
KV pairs exceeds the threshold, non-full packs can be merged
to improve storage utilization.

PutKey: Alg. 6 outlines the procedures of the put operation.
Upon receiving the KV pair (k′, v′), the proxy first verifies
its presence in the outsourced store. If the KV pair exists,
the proxy proceeds to update the corresponding pack value
accordingly. As shown in lines 3-4, if k′ has been deleted in
prior operations, it is imperative to remove k′ from the deletion
index T to maintain data consistency. In cases where (k′, v′)
is absent from the key-pid index I, (k′, v′) is added to S, a set
of KV pairs to be inserted into the outsourced store. The proxy
maintains S. Once the total length of KV pairs in S, denoted
by Lsum exceeds 2Lmax, we utilize DualPacking algorithm to
pack KV pairs into packs. This method ensures that the first
two packs best match our goal of minimizing the overhead for
protecting pack length and frequency information, while also
limiting storage overhead in the proxy for storing S. The KV
pairs successfully packed in this round are removed from S
and the remaining KV pairs in S will wait for the next round
of packing.

9

Algorithm 4: QueryProcessor
Input: Query queue Q, real query distribution Dp

e ,
fake query distribution Dp

f , α.
Output: Query requests for IDPq .

1 while Q ≠ ∅ do
2 if |Q| > 1 then
3 while 1 do
4 coin

α←− {0, 1};
5 if coin = 1 then

// Real query
6 IDP ← Dequeue(Q);
7 Call CSP.GetPK(IDP); break;

8 else
// Fake query

9 IDP
$←− Dp

f ; Call CSP.GetPK(IDP);
10 continue;

11 else
// The last query in Q

12 r
$←− B;

13 for i = 1, ..., r do
14 coin

β←− {0, 1};
15 if coin = 1 and Q = ∅ then
16 IDP

$←− Dp
e ;

17 else if coin = 1 and Q ≠ ∅ then
18 IDP ← Dequeue(Q);

19 else if coin = 0 then
20 IDP

$←− Dp
f ;

21 Call CSP.GetPK(IDP);

22 CSP.GetPk(IDP)

23 ĈP ← D̂[IDP];
24 Send (IDP , ĈP) to the proxy;

Remarks: The proxy serves as the portal between users and
the CSP. Upon detecting changes in the real query distribution,
it can update α and the fake query distribution accordingly.
This allows the storage system to efficiently adapt to changes
in key access distribution. After an extended period, if the
outsourced storage experiences significant changes, the proxy
can reinitialize the system to maintain high efficiency.

VI. SECURITY ANALYSIS

Consistent with the formal security model in [17], [19], we
consider a persistent passive adversary capable of accessing
transcripts of encrypted queries and responses between the
proxy and the CSP. This adversary can discern the pack
length and access distributions from the intercepted data.
Our encrypted and compressed KV store includes protection
against pack length and frequency pattern analysis. We now
formally define the system security model and provide proof
with respect to the two aspects.

Algorithm 5: DeleteKey
Input: Secret key sk, deleted KV pair (kd, vd), index

T .
Output: Index T .

1 IDPd
← I[kd];

2 if IDPd
not in T then

3 T (IDPd
)← {kd};

4 else
5 Add kd to T [IDPd

];

6 Dp
e(IDPd

)← Dp
e(IDPd

)−De(kd);
7 Update α according to Eq. 9;
8 Update Dp

f according to Eq. 10;

A. Protection Against Pack Length Pattern Analysis

To protect the length patterns of KV pairs from length
pattern attacks, all packs are padded to a uniform size. Let
L = (Linit,Llp,Lup) represent the group of leakage func-
tions, where Linit, Llp, and Lup are the leakage functions
for system initialization, length pattern, and update pattern,
respectively. Llp pertains to the leaked length pattern during
data accesses. Lup involves the pid and the corresponding pack
length leaked during update operations.

Let ECKV = (Initialization, GetKey, QueryProcessor,
DeleteKey, PutKey) be the encrypted and compressed KV
store scheme. Given a Probabilistic Polynomial Time (PPT)
adversary A, a PPT simulator S, and the encryption secure
parameter λ, we introduce two interactive probabilistic exper-
iments: RealA(1

λ) and IdealA,S(1
λ), defined as below.

RealA(1
λ): A selects a KV store D and gives it to a

challenger. The challenger transforms D into an encrypted
and compressed KV store using the Initialization algorithm.
Meanwhile, the challenger can input and delete KV pairs using
the PutKey and DeleteKey algorithms. A makes a polynomial
number of queries on keys, and the challenger returns cipher-
texts by executing the GetKey and QueryProcessor algorithms.
Finally, A returns a bit, which is the output of the experiment.
IdealA,S(1

λ):A provides the KV store D to S. S simulates
the encrypted and compressed KV store based on Linit. With
the update leakage function Lup, S simulates the insertion or
deletion of KV pairs. A performs a polynomial number of
queries on keys. S responses with ciphertexts, guided by the
leakage function Llp. A returns a bit as the final output of the
experiment.

Definition 2. We consider ECKV is secure against length
pattern analysis attacks if for all PPT adversaries A, there
exists a PPT simulator S such that:

|Pr[RealA(1
λ) = 1]− Pr[IdealA,S(1

λ) = 1]| ≤ negl(1λ),

where negl(1λ) is a negligible function.

Formally, the leakage functions Linit,Llp,Lup can be cap-

10

Algorithm 6: PutKey
Input: Secret key sk, newly inserted KV pair (k′, v′),

KV pair set S, longest pack size Lmax, longest
pack size after compression L

′
.

Output: KV pair set S.
1 if k′ ∈ I then
2 IDPk′ ← I[k′];
3 if k′ in T [IDPk′] then

// remove from deletion index T
4 Delete k′ from T [IDPk′];

// Value update

5 (IDPk′ , ĈPk′)← CSP.GetPk(IDPk′);
6 Pk′ ← Decompress(Dec(sk, ĈPk′));
7 Pk′ [k′]← v′;
8 Ĉ ′

Pk′ ← Enc(sk,Compress(Pk′));
9 Call CSP.UpdatePk(IDPk′ , Ĉ

′
Pk′);

10 else
11 Add (k′, v′) into S;

12 Lsum =
∑

i∈S li;
13 if Lsum ≥ 2Lmax then
14 Call Alg. 1 to group KV pairs in S into packs;
15 Add the first two packs into P ′;
16 for each pack P ∈ P ′ do
17 Assign a unique number IDP as pid;
18 ĈP ← Enc(sk,Compress(P));
19 Dp

e(IDP) = 0;
20 for each KV pair (k, v) in P do
21 Delete (k, v) in S;
22 Add (k, IDP) into key-pid index I;
23 Dp

e(IDP)← Dp
e(IDP) +De(k);

24 Pad ĈP to length L
′
;

25 Call CSP.PutPk(IDP , ĈP);

26 Update α according to Eq. 9;
27 Update Dp

f according to Eq. 10;

28 CSP.UpdatePk(IDP , Ĉ
′
P)

29 D̂[IDP]← Ĉ ′
P ;

30 CSP.PutPk(IDP , ĈP)

31 Add (IDP , ĈP) into index D̂;

tured by an external adversary A are defined as

Linit = {m, (IDP , L
′), IDP ∈ P},

Llp = {(IDP , L
′), IDP ∈ SQ},

Lup = {opt, (IDP , L
′), IDP ∈ SP}.

m is the number of packs. P is the set of packs, L′ is the
longest pack size after compression. SQ denotes the set of
pack identifies corresponding to keys in query queue Q. SP
denotes the set of pack identifies affected by update operations.
In term of opt in Lup, we only consider the put operation
since the delete operation will not cause query to the CSP, as
discussed in Section V-B.

Theorem 3. ECKV is L-secure against length pattern analysis
attacks under the random oracle model for the Authenticated
Encryption with Associated Data (AEAD) scheme framework.

Proof. An AEAD scheme is secure against Chosen Ciphertext
Attack (CCA) when the confidentiality of the proxy’s secret
key is ensured. We aim to prove the security of the proposed
pack length padding scheme under the AEAD scheme frame-
work. To achieve this, we need to demonstrate the existence
of a PPT simulator S such that, for every PPT adversary,
the outputs of the experiments RealA(1

λ) and IdealA,S(1
λ)

are computationally indistinguishable. Given the leakage of
Linit, the simulator S simulates all encrypted pack values.
These values cannot be distinguished from those of the actual
encrypted database. Specifically, S initializes a store with m
entries, where each entry is in the form a pid and a L′-
bit random string. Given the leakage of Llp, S simulates
queries for pid and obtains the corresponding encrypted and
compressed pack as real ones. S follows the random oracle
to simulate the data access process over the simulated store.
For each query, S selects targeted pids to match simulated
encrypted values, and the length of all returned ciphertexts
are the same. For the put operation, if the KV pair is newly
added in the store, it will be cached in the proxy. When the
total size of cached KV pairs greater than 2Lmax, leakages
are the same as in Linit. If it is to update the value of a
key, leakages are captured in Lup. S gets and updates the
pack as observed. It will also updates the pack with the
newly simulated ciphertext. The uniform size of the packs
and CCA-security of AEAD ensures that A is unable to
distinguish between real interactions and simulated ones. Then
outputs from experiments RealA(1

λ) and IdealA,S(1
λ) are

computationally indistinguishable.

B. Protection Against Pack Frequency Pattern Analysis

We now define the security model for the proposed fre-
quency protection scheme. The persistent passive adversary
A is assumed to observe the queries and responses of the
packs and to track the distribution of pack access. Using
the information, A attempts to infer sensitive details about
the outsourced store, such as key access patterns and key
identities. To provide a formal security analysis about our pack
frequency protection scheme, we introduce the security defi-
nition called Pack-Level Real-Or-Random Indistinguishability
under Chosen Distribution Attack (P-ROR-CDA) through the
real and ideal games GameAQ,Dp,Dp

e
and GameAQ, defined in

Fig. 3. The procedures Initialization and QueryProcessor are
defined in Alg. 2 and Alg. 4, respectively. τ is the transcript
of a series of queries. A1 and A2 are challenger and adversary
in each game, respectively.

We evaluate the success of an adversary A in attacking the
proposed design by assessing its ability to distinguish between
the two games: GameAQ,Dp,Dp

e
and GameAQ. The real game

GameAQ,Dp,Dp
e

is parameterized by the number of queries Q,
real pack access distribution Dp, and estimated pack access
distribution Dp

e . Dp, Dp
e can be calculated based on D,De.

In game GameAQ,Dp,Dp
e
, A has access to the encrypted and

11

Real game GameA
Q,Dp,D

p
e

:

D $←− A1; sk ← SK; Q ← ∅;
(D̂, Dp

e , D
p
f , α, I)← Initialization(De,D, L⋆, sk,Enc,Compress);

for q ∈ Q do
IDP ′

$←− Dp; Q ← Q∪ {IDP ′};
{(IDP , ĈP)} ← QueryProcessor(Q);
τq ← {(IDP , ĈP)};

τ = {τq}; b← A2(D̂, τ); Return b;

Ideal game GameAQ:

D $←− A1; D̂ ← ∅;
for 1 ≤ i ≤ m do

IDPi
← {0, 1}∗; ĈPi

← {0, 1}∗;

D̂ ← D̂ ∪ {(IDPi
, ĈPi

)};
for q ∈ Q do

τq ← ∅;
for 1 ≤ j ≤ nq do

IDPq,j

$←− Labels(D̂);
ĈPq,j

← D̂(IDP q,j);
τq ← τq ∪ {(IDP q,j , ĈPq,j

)};

τ = {τq}; b← A2(D̂, τ); Return b;

Fig. 3: Security game for pack frequency protection scheme.

compressed KV store along with a transcript of accesses. In
GameAQ, A has access to a randomly generated encrypted and
compressed store and a transcript of randomly chosen queries.

Definition 3. Given the number of queries Q, distribu-
tions Dp, Dp

e , our scheme achieves P-ROR-CDA security
if the advantage of the adversary A in breaking games,
GameAQ,Dp,Dp

e
and GameAQ, is negligible, where the advan-

tage Advp−ror−cda(A) is defined as

Advp−ror−cda(A)= |Pr[GameAQ,Dp,Dp
e
⇒1]−Pr[GameAQ⇒1]|.

We now use Theorem 4 to prove that our design is P-ROR-
CDA secure.

Theorem 4. Given the query queue Q and distributions Dp,
Dp

e , our design can achieve P-ROR-CDA security for any
Q-query if A’s advantage Advp−ror−cda(A) in breaking
GameAQ,Dp,Dp

e
and GameAQ is negligible, namely

Advp−ror−cda(A) ≤ Advror
Enc(B) +AdvQ,Dp,Dp

e
(C),

where Enc is the authenticated encryption scheme adopted by
our design. B is an adversary in the security model of Enc,
and C is a distribution distinguisher.

Proof. The proof is reduced to the securities of real-versus-
random indistinguishability of Enc and the indistinguishability
of Dp and Dp

e . We define two games G1 and G2. Let G1 be
Advp−ror−cda(A) except that the encryption algorithm Enc is
replaced with a random function outputting encrypted strings.
The advantage of A in Advp−ror−cda(A) and G1 can be
upper bounded by the advantage of B against Enc:

|Pr[GameAQ,Dp,Dp
e
⇒ 1]− Pr[G1 ⇒ 1]| ≤ Advror

Enc(B).

The game G2 is the same as G1 except that the distribution
Dp

e is replaced by Dp. A reduction gives that

|Pr[G1 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ AdvQ,Dp,Dp
e
(C).

Based on above discussions, we have

|Pr[GameAQ,Dp,Dp
e
⇒ 1]− Pr[G2 ⇒ 1]|

≤ Advror
Enc(B) +AdvQ,Dp,Dp

e
(C).

Then the difference between A′s advantages in G2 and
GameAQ is

|Pr[GameAQ ⇒ 1]− Pr[G2 ⇒ 1]| ≤ negl(1λ).

According to above discussions, we can conclude that
Advp−ror−cda(A) ≤ Advror

Enc(B) +AdvQ,Dp,Dp
e
(C). It can

be known that G2 is distributed identically to GameAQ, where
all encrypted packs are random strings. We now prove that all
packs have the same access frequency.

Our design achieves P-ROR-CDA security if the pack access
frequency captured by A is independent to its pid. In our
design, each access is independent and sampled from Dp with
probability α and or Dp

f with 1 − α. By constructing the
scheme as outlined in Eq. 8, the probability of accessing any
pack remains uniform. Let τ ′ be a random variable denoting
the output of the QueryProcessor on an input sampled from
Dp. τ ′i is the i-th access in the output. Let (IDP , ĈP) is any
random encrypted pair. For all i and any (IDP , ĈP), we have

Pr[τ ′i = ((IDP , ĈP))]

= Pr[τ ′i |coin = 1] · α+ Pr[τ ′i |coin = 0] · (1− α)

= Dp(IDP) ·
1

Fmaxm
+

Fmax −Dp(IDP)

Fmaxm− 1
· (1− 1

Fmaxm
)

=
1

m
.

This proves the independence of the packs. The proof is
completed.

VII. EXPERIMENTAL EVALUATION

A. Prototype Implementation

The experiment is simulated on a personal computer
equipped with 24GB of memory and a 16-core i7 CPU.
Both the proxy and CSP are deployed on this computer.
The link between the proxy and CSP is set to 1Gbps. The
encryption and compression algorithms adopted are Sodium1

and Zstandard2, respectively.
We compare our design with two state-of-the-art encrypted

and compressed KV stores: LFP [19] and MiniCrypt [11].
LFP incorporates pack length and frequency protection, prior-
itizing the smoothing of pack length distribution. In contrast,
MiniCrypt organizes KV pairs into packs based on key order,
focusing solely on pack length protection without addressing
access frequency. We enhance MiniCrypt by adjusting the
pack access distribution to be uniform. Our performance
comparison spans two representative storage backends: Redis,

1https://github.com/winlibs/libsodium
2https://github.com/facebook/zstd

12

TABLE II: Computational overhead evaluation for system initialization.

Data size (GB) Packing (min) Pack compression (s) Pack encryption (s) Total initialization (min)
DualPacking LFP Our design Our design Our design

2 0.33 0.60 8.43 1.13 0.56
4 2.20 2.68 16.93 2.20 2.67
6 6.08 6.60 28.69 3.24 6.85
8 11.26 11.93 61.23 4.39 12.68

10 19.57 20.12 98.61 5.57 21.75

Uniform Zipfian (=0.8) Zipfian (=0.99)

Distribution of KV pair lengths

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

O
ve

ra
ll

co
st

 (
G

B
)

DualPacking
LFP
MiniCrypt

(a) Overall cost vs. KV pair length dis-
tribution

100 101 102 103 104 105
6.9

7

7.1

7.2

7.3

7.4

O
ve

ra
ll

co
st

 (
G

B
)

DualPacking
LFP
MiniCrypt

(b) Overall cost vs. β

0.1 0.3 0.5 0.7 0.9
7

7.2

7.4

7.6

7.8

8

8.2

O
ve

ra
ll

co
st

 (
G

B
)

DualPacking
LFP
MiniCrypt

(c) Overall cost vs. α

200 400 600 800 1000
K

7

7.1

7.2

7.3

7.4

7.5

7.6

O
ve

ra
ll

co
st

 (
G

B
)

DualPacking
LFP

(d) Overall cost vs. K

Fig. 4: Evaluation of the overall cost of data outsourcing.

an in-memory KV store, and RocksDB, a persistent SSD-
based KV store. By default, we set the parameter β = 106

and the pack size L⋆ = 0.8MB. To facilitate evaluation,
in certain experiments, we enhance DualPacking with K-
indistinguishable frequency protection, setting the parameter
K to 1000.

The dataset and workloads are generated using the Yahoo!
Cloud Servicing Benchmark (YCSB) [20], a standard bench-
mark for KV stores. The dataset consists of 2.5 × 105 KV
pairs, with the length distribution of KV pairs following a
uniform distribution. We assess system throughput using two
YCSB workloads: workload A (95% reads, 5% writes) and
workload C (100% reads). YCSB uses a Zipfian distribution
for key accesses. To simulate access patterns in real-world de-
ployments [20], we set the skewness parameter α in the Zipfian
distribution to 0.99, indicating a highly skewed distribution.

B. Performance Evaluation

System initialization evaluation: We first evaluate the
system initialization performance of our design. During this
process, the proxy utilizes the DualPacking method to organize
KV pairs into packs. Each pack is then compressed, encrypted,
and padded to equalize their sizes. Table II shows the latency
of each main step during system initialization as the dataset
size varies. The results indicate that the packing operation
is the most time-consuming step. Notably, DualPacking con-
sistently outperforms LFP in terms of packing latency. This
efficiency gain occurs because, unlike LFP which relies on
a computationally intensive binary search to determine the
optimal number of packs, DualPacking completes the packing
process by traversing all KV pairs in a single pass.

Evaluation on overall cost of data outsourcing: We then
compare the performance of our design with that of LFP and
MiniCrypt in terms of the overall cost of data outsourcing.
We first evaluate the influence of KV pair distribution on the
overall cost of data outsourcing, considering two typical types

of distribution: Zipfian and uniform. We test different values of
the skewness parameter α in the Zipfian distribution to better
evaluate the performance. As shown in Fig. 4(a), DualPacking
outperforms LFP and MiniCrypt in all cases, which confirms
the efficiency of our design. We then evaluate the impact of
the weight parameter β on the overall cost of data outsourcing,
as shown in Fig. 4(b). β is used to adjust the importance of
bandwidth overhead in the overall cost. The results show that
DualPacking consistently outperforms other designs when β
varies from 1 to 105.

We also evaluate the impact of varying key access distri-
butions characterized by α. As depicted in Fig. 4(c), when
α increases from 0.1 to 0.9, the overall cost of our design
remains the lowest. It can also be seen that as α increases, the
overall cost for all algorithms rises. This increase is because a
higher α means a greater proportion of the total frequency
is concentrated in the most frequently accessed KV pairs,
requiring the system to send more fake queries to protect the
frequency information of the KV pairs.

To further evaluate the performance of our design when
frequency protection is extended to K-indistinguishable fre-
quency smoothing, we compare the overall cost of DualPack-
ing and LFP with varied values of K. As shown in Fig. 4(d),
the overall cost of DualPacking is always lower than that of
LFP when K increases from 100 to 1000. Additionally, the
overall cost keeps increasing with the rise in K. The reason
is that with the increase in K, more fake queries are needed
to protect the frequency information.

Storage overhead evaluation: We further evaluate the
performance of DualPacking in terms of storage overhead. Fig.
5(a) shows the deviation from the ideal pack number across
different data sizes. The ideal pack number is determined by
taking the ceiling of the quotient of the data size and the
pack size. The results indicate that DualPacking consistently
exhibits the smallest deviation, demonstrating its superior effi-
ciency in managing storage compared to LFP and MiniCrypt.

13

2 4 6 8 10
Data size (GB)

0

50

100

150

200

250

300

350

D
ev

ia
tio

n
fr

om
 id

ea
l p

ac
k

nu
m

be
r

DualPacking
LFP
MiniCrypt

(a) Deviation from ideal pack numbers

2 4 6 8 10
Data size (GB)

0

50

100

150

200

T
ot

al
 s

iz
e

of
 p

ad
de

d
da

ta
 (

M
B

)

DualPacking
LFP
MiniCrypt

(b) Storage overhead vs. data size

0.5 0.6 0.7 0.8 0.9 1
Pack size (MB)

0

0.5

1

1.5

2

2.5

3

3.5

T
ot

al
 s

iz
e

of
 p

ad
de

d
da

ta
 (

M
B

) 108

DualPacking
LFP
MiniCrypt

(c) Storage overhead vs. pack size

0 5000 10000
Number of packs (after ranking)

740

760

780

800

Pa
ck

 s
iz

e
(K

B
)

DualPacking
LFP
MiniCrypt
Optimal pack size

(d) Pack size ranking

Fig. 5: Storage overhead evaluation.

2 4 6 8 10
Data size (GB)

500

1000

1500

2000

2500

B
an

dw
id

th
 o

ve
rh

ea
d

(K
B

) DualPacking
LFP
MiniCrypt

(a) Bandwidth overhead vs. data
size (uniform security)

2 4 6 8 10
Data size (GB)

200

400

600

800

1000

1200

1400

B
an

dw
id

th
 o

ve
rh

ea
d

(K
B

) DualPacking
LFP

(b) Bandwidth overhead vs. data
size (K-indistinguishable)

0.1 0.3 0.5 0.7 0.9
100

101

102

103

B
an

dw
id

th
 o

ve
rh

ea
d

(K
B

) DualPacking
LFP
MiniCrypt

(c) Bandwidth overhead vs. α

200 400 600 800 1000
K

0

100

200

300

400

500

B
an

dw
id

th
 o

ve
rh

ea
d

(K
B

) DualPacking
LFP

(d) Bandwidth overhead vs. K

Fig. 6: Bandwidth overhead evaluation.

Fig. 5(b) illustrates the total size of padded data as the data
size increases. The figure shows that DualPacking significantly
reduces storage overhead. For example, when the data size
reaches 10GB, DualPacking incurs only about a 50MB storage
overhead in length protection, which is approximately just one-
fourth of the overhead incurred by MiniCrypt.

In Fig. 5(c), we evaluate the impact of pack size on storage
overhead. The results indicate that storage overhead decreases
with the increase in pack size. This decrease is attributed
to larger pack sizes enabling more efficient grouping of
packs, resulting in less wasted space. Meanwhile, DualPacking
maintains the lowest storage overhead across all pack sizes.
Fig. 5(d) shows the ranking of pack sizes after packing for
each design. DualPacking consistently keeps pack sizes close
to the optimal value. In contrast, approximately one-third of
the packs generated by LFP have sizes significantly smaller
than the optimal pack size, while only a small portion of
MiniCrypt’s packs approach the optimal size. This confirms
the packing efficiency of our design.

Bandwidth overhead evaluation: We then analyze the
bandwidth overhead of DualPacking and compare it with LFP
and MiniCrypt. We first consider uniform security, where the
frequency distribution over all packs is smoothed to uniform.
As shown in Fig. 6(a), DualPacking achieves the lowest
bandwidth overhead, followed by LFP and then MiniCrypt.
Meanwhile, when the number of user requests remains the
same, the bandwidth overhead decreases across all designs as
the data size increases. This trend arises because the overhead
is primarily influenced by the access frequency of the most
frequently accessed KV pairs. Under a Zipfian distribution, the
relative access frequency of the most popular KV pairs dimin-
ishes as the dataset grows, thereby reducing their contribution

A C
YCSB Workload

10-1

100

101

102

103

104

Th
ro

ug
hp

ut
 (K

O
ps

)

DualPacking–single proxy thread
LFP–single proxy thread
DualPacking–multiple proxy threads
LFP–multiple proxy threads

(a) Redis

A C
YCSB Workload

10-1

100

101

102

103

104

Th
ro

ug
hp

ut
 (K

O
ps

)

DualPacking–single proxy thread
LFP–single proxy thread
DualPacking–multiple proxy threads
LFP–multiple proxy threads

(b) RocksDB

Fig. 7: Throughput evaluation.

to the overhead. We then evaluate DualPacking and LFP under
K-indistinguishable frequency protection. Fig. 6(b) highlights
DualPacking’s consistent superiority over LFP in this scenario.
For instance, at an 8GB data size, DualPacking incurs a
bandwidth overhead of 419KB, which is approximately 75%
of LFP’s overhead.

We also evaluate the impact of parameters on bandwidth
overhead. In Fig. 6(c), we vary the parameter α of the request
access frequency distribution from 0.1 to 0.9. The results show
that DualPacking consistently achieves significantly lower
bandwidth overhead compared to LFP and MiniCrypt. No-
tably, as α increases, the bandwidth overhead for all algorithms
also increases. This occurs because a higher α value implies
that a larger proportion of total access frequency is attributed
to high-frequency KV pairs, requiring the system to generate
more fake queries to protect their frequency information.
We then evaluate DualPacking and LFP under varying K
values. As shown in Fig. 6(d), bandwidth overhead grows
with the increase of K, yet DualPacking maintains consistent

14

20 40 60 80 100

Number of KV pairs (104)

0

1

2

3

4

5

6
Pa

ck
in

g
la

te
nc

y
(h

)

DualPacking
Power-law fit (b =1.78)

(a) Packing latency

Uniform Zipfian (=0.8) Zipfian (=0.99)

Distribution of KV pair lengths

37

38

39

40

41

42

O
ve

ra
ll

co
st

 (
G

B
)

DualPacking
LFP
MiniCrypt

(b) Overall cost of data outsourcing

(c) Throughput evaluation - Redis

(d) Throughput evaluation - RocksDB

Fig. 8: System scalability evaluation for handling large-scale workloads.

superiority over LFP across all tested configurations.
Throughput evaluation: We conduct a comprehensive

throughput evaluation of DualPacking. To ensure a fair com-
parison and to account for low throughput under uniform
security conditions, we compared DualPacking and LFP
with K-indistinguishable frequency protection across multiple
YCSB workloads on Redis and RocksDB. Fig. 7(a) illustrates
the throughput performance for single-threaded and multi-
threaded operations with Redis under workloads A and C.
In single-threaded mode, DualPacking achieves 7 KOps for
workload A and 13.8 KOps for workload C, significantly
outperforming LFP, which attains lower throughput for both
workloads. For multi-threaded scenarios (8 threads), Dual-
Packing demonstrates even greater superiority, delivering 47.4
KOps (workload A) and 97.8 KOps (workload C), while
LFP lags behind. Fig. 7(b) shows results for RocksDB. The
throughput trends closely align with those observed in Redis,
further validating DualPacking’s high performance across dif-
ferent database backends.

Scalability evaluation: We further evaluate the scalability
of our design for handling large-scale workloads. Specifically,
we consider outsourcing a 50GB KV store with 1 million KV
pairs whose lengths follow a uniform distribution and evaluate
the performance of our design from three aspects: packing
latency, overall cost of data outsourcing, and throughput.

In Fig. 8(a), we illustrate how the packing latency varies
with the number of KV pairs. To better evaluate the scalability
of DualPacking, we consider each pair of packing latency and
number of KV pairs as a data point and use these points to
fit a power-law function of the form y = a · nb, where a
and b are parameters, n is the number of KV pairs, and y
is the packing latency. The results show that the exponent
b = 1.78 < 2, which is consistent with the time complexity
analysis presented in Section IV-B. In terms of the overall
cost of data outsourcing, the proposed DualPacking algorithm
achieves the lowest cost compared to LFP and MiniCrypt, as
shown in Fig. 8(b). Regarding throughput, our system con-
sistently outperforms LFP across all evaluation scenarios, as
illustrated in Fig. 8(c) and Fig. 8(d). These results demonstrate
the excellent scalability of our design.

VIII. RELATED WORKS

A. Secure KV Stores

KV stores play a central role in numerous applications
due to their high performance. As concerns about data se-

curity increase, substantial research has focused on secure
KV stores, particularly in cloud environments [21]–[26]. One
line of research adopts the technique of Intel Software Guard
Extensions (SGX), which enhances data security against un-
trusted cloud environments by storing and processing sensitive
data within a hardware-assisted trusted execution environment
known as an enclave [27]–[29]. A significant limitation of
SGX-based designs is their high reliance on the security of
the enclave. Another line of research on secure KV stores
uses cryptographic techniques to protect data [30]–[32]. In
[31], Yuan et al. developed a distributed searchable KV
store. Subsequently, considerable research has been conducted
to enrich the functionalities of query operations [12], [32].
However, these methods often fail to guard against pattern-
analysis attacks. Even with encrypted data, attackers can still
infer sensitive information by analyzing data access patterns,
such as the lengths and access frequencies of queried data
[33], [34].

To obscure access patterns, numerous Oblivious RAM
(ORAM) based solutions have been proposed [35]–[38].
ORAM aims to prevent attackers from deducing data content
by disguising data access patterns. Despite its potential, the
high storage and bandwidth overhead of ORAM limits its ef-
fectiveness [34], [39]. Recently, PANCAKE [17] has emerged
as a novel solution to protect KV stores from pattern-analysis
attacks. PANCAKE achieves this by smoothing the length
and access frequency of all keys to uniformity, securing both
length and frequency. However, the introduction of replicas
in PANCAKE incurs significant storage overhead, especially
for large-scale KV stores. In [18], a K-indistinguishable
frequency smoothing designs is proposed to further reduce the
overhead against pattern-analysis attacks.

B. Secure Data Compression

Beyond security, efficiency is another critical issue for
cloud-based storage systems. Compression is widely utilized
in various storage systems, such as Cassandra [40], MongoDB
[41], and Redis [42], to boost performance. It not only reduces
storage overhead but also enhances overall system efficiency
[2]. However, while both encryption and compression are
important for KV stores, their integration has been limited
due to their inherent incompatibility [12].

MiniCrypt [11] is the first design that combines compression
and encryption for KV stores without compromising efficiency.
It divides KV pairs into packs, which are then compressed

15

and encrypted at the pack level. Subsequently, TinyEnc [12]
was proposed to enhance this approach by providing rich
query supports. However, due to variations in access frequency
and the sizes of packs returned by the cloud in response to
user queries, these designs are vulnerable to pattern-analysis
attacks. For this problem, Zhang et al. [19] proposed a secure
and compressed KV storage system with pattern-analysis secu-
rity, featuring a length-first packing algorithm to minimize the
difference in pack lengths. However, this algorithm overlooks
the overhead associated with frequency information protection,
potentially leading to significant bandwidth overhead. There-
fore, there is a pressing need to design a packing algorithm
that considers both length and frequency protection, which is
the focus of this paper.

IX. CONCLUSION

In this paper, we explore the optimal packing problem
for encrypted and compressed KV stores, with the goal of
minimizing the overhead of protection against pattern-analysis
attacks. We first formally formulate the cost-efficient and
pattern-protected packing problem and then develop Dual-
Packing, a two-dimensional packing algorithm. A detailed
analysis of DualPacking is provided to demonstrate its high
efficiency. Subsequently, we develop an encrypted and com-
pressed KV storage system that can effectively handle dynamic
changes within KV stores. Finally, we provide a compre-
hensive security analysis and conduct extensive experiments
to validate the efficiency of DualPacking. The experimental
results confirm that the proposed design can protect against
pattern-analysis attacks while minimizing the overall cost of
data outsourcing.

REFERENCES

[1] A. Khandelwal, R. Agarwal, and I. Stoica, “Blowfish: Dynamic storage-
performance tradeoff in data stores,” in Proc. 13th USENIX Symp. Netw.
Syst. Des. Implementation, 2016.

[2] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct: Enabling queries
on compressed data,” in Proc. 12th USENIX Symp. Netw. Syst. Des.
Implementation, 2015, pp. 337–350.

[3] X. Yuan, X. Wang, C. Wang, B. Li, and X. Jia, “Enabling encrypted rich
queries in distributed key-value stores,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 6, pp. 1283–1297, 2018.

[4] Ciphercloud, Online at http://www.ciphercloud.com/.
[5] Navajo Systems, Online at http://tinyurl.com/y85obds6.
[6] C. Zhang, Y. Miao, Q. Xie, Y. Guo, H. Du, and X. Jia, “Privacy-

preserving deduplication of sensor compressed data in distributed fog
computing,” IEEE Trans. Parallel Distributed Syst., vol. 33, no. 12, pp.
4176–4191, 2022.

[7] Q. Xie, C. Zhang, and X. Jia, “Security-aware and efficient data
deduplication for edge-assisted cloud storage systems,” IEEE Trans.
Services Comput., vol. 16, no. 3, pp. 2191–2202, 2023.

[8] Y. Guo, C. Zhang, C. Wang, and X. Jia, “Towards public verifiable and
forward-privacy encrypted search by using blockchain,” IEEE Trans.
Dependable Secure Comput., vol. 20, no. 3, pp. 2111–2126, 2023.

[9] S. Huang, J. Xie, and M. M. A. Muslam, “A cloud computing based
deep compression framework for uhd video delivery,” IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 1562–1574, 2022.

[10] R. Xie and X. Jia, “Transmission-efficient clustering method for wireless
sensor networks using compressive sensing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 806–815, 2013.

[11] W. Zheng, F. Li, R. A. Popa, I. Stoica, and R. Agarwal, “Minicrypt:
Reconciling encryption and compression for big data stores,” in Proc.
12th Eur. Conf. Comput. Syst., 2017, pp. 191–204.

[12] S. Qi, J. Wang, M. Miao, M. Zhang, and X. Chen, “Tinyenc: Enabling
compressed and encrypted big data stores with rich query support,” IEEE
Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 176–192, 2023.

[13] M. Zhang, S. Qi, M. Miao, and F. Zhang, “Enabling compressed
encryption for cloud based big data stores,” in Proc. Cryptol. Netw.
Secur. (CANS). Berlin, Germany: Springer-Verlag, 2019, pp. 270–287.

[14] C. Zhang, Q. Xie, M. Wang, Y. Guo, and X. Jia, “Optimal compression
for encrypted key-value store in cloud systems,” IEEE Trans. Comput.,
vol. 73, no. 3, pp. 928–941, 2024.

[15] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
NDSS Symp., 2012.

[16] S. Lambregts, H. Chen, J. Ning, and K. Liang, “Val: Leakage-abuse
attack with leaked documents,” in Proc. Eur. Symp. Res. Comput. Secur.
Cham: Springer, 2022, pp. 653–676.

[17] P. Grubbs, A. Khandelwal, M.-S. Lacharité, L. Brown, L. Li, R. Agarwal,
and T. Ristenpart, “Pancake: Frequency smoothing for encrypted data
stores,” in Proc. 29th USENIX Secur. Symp., 2020, pp. 2451–2468.

[18] C. Zhang, Q. Xie, Y. Miao, and X. Jia, “K-indistinguishable data access
for encrypted key-value stores,” in Proc. IEEE 42nd Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2022, pp. 1144–1154.

[19] C. Zhang, Y. Ming, M. Wang, Y. Guo, and X. Jia, “Encrypted and
compressed key-value store with pattern-analysis security in cloud
systems,” IEEE Trans. Inf. Forensics Secur., vol. 19, pp. 221–234, 2024.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143–154.

[21] C. Zhang, Y. Guo, X. Jia, C. Wang, and H. Du, “Enabling proxy-free
privacy-preserving and federated crowdsourcing by using blockchain,”
IEEE Internet Things J., vol. 8, no. 8, pp. 6624–6636, 2021.

[22] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, and X. Jia, “Enckv: An
encrypted key-value store with rich queries,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., 2017, pp. 423–435.

[23] Y. Hu, X. Yao, R. Zhang, and Y. Zhang, “Freshness authentication for
outsourced multi-version key-value stores,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 3, pp. 2071–2084, 2023.

[24] M. Campanelli, F. Engelmann, and C. Orlandi, “Zero-knowledge for
homomorphic key-value commitments with applications to privacy-
preserving ledgers,” in Int. Conf. Secur. Cryptogr. Netw. Springer, 2022,
pp. 761–784.

[25] Z. Jiang, X. Guo, T. Yu, H. Zhou, J. Wen, and Z. Wu, “Private set
intersection based on lightweight oblivious key-value storage structure,”
Symmetry, vol. 15, no. 11, p. 2083, 2023.

[26] H. Sun, G. Chen, Y. Yue, and X. Qin, “Improving lsm-tree based key-
value stores with fine-grained compaction mechanism,” IEEE Trans.
Cloud Comput., vol. 11, no. 4, pp. 3778–3796, 2023.

[27] F. Yang, Y. Chen, Y. Lu, Q. Wang, and J. Shu, “Aria: Tolerating skewed
workloads in secure in-memory key-value stores,” in Proc. IEEE Int.
Conf. Data Eng. (ICDE), 2021, pp. 1020–1031.

[28] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded
in-memory key-value storage with sgx,” in Proc. 14th EuroSys Conf.,
Dresden, Germany, Mar. 2019, pp. 1–15.

[29] I. Messadi, S. Neumann, N. Weichbrodt, L. Almstedt, M. Mahhouk, and
R. Kapitza, “Precursor: A fast, client-centric and trusted key-value store
using rdma and intel sgx,” in Middleware, 2021, pp. 1–13.

[30] X. Yuan, C. Cai, C. Wang, and Q. Wang, “A scalable ledger-assisted
architecture for secure query processing over distributed iot data,” CCF
Trans. Netw., vol. 3, no. 2, pp. 97–111, 2020.

[31] X. Yuan, X. Wang, C. Wang, C. Qian, and J. Lin, “Building an encrypted,
distributed, and searchable key-value store,” in Proc. 11th ACM Asia
Conf. Comput. Commun. Secur., May 2016, pp. 547–558.

[32] W. Lin, H. Cui, B. Li, and C. Wang, “Privacy-preserving similarity
search with efficient updates in distributed key-value stores,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1072–1084, 2021.

[33] S. Lambregts, H. Chen, J. Ning, and K. Liang, “Volume and access
pattern leakage-abuse attack with leaked documents,” Cryptology ePrint
Archive, 2022.

[34] Y. Dou and H. C. B. Chan, “Leakage-suppressed encrypted keyword
queries over multiple cloud servers,” IEEE Trans. Cloud Comput.,
vol. 12, no. 1, pp. 26–39, 2024.

[35] H. Liu, X. Lu, S. Duan, Y. Zhang, and Y. Xiang, “An efficient oblivious
random data access scheme in cloud computing,” IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 1940–1953, 2023.

[36] H. Ma and X. Wang, “Cloud storage audit scheme based on oram and
sgx,” in Proc. Int. Conf. Intell. Informat. Biomed. Sci. (ICIIBMS), vol. 8,
2023, pp. 352–356.

[37] K. G. Larsen and J. B. Nielsen, “Yes, there is an oblivious ram lower
bound!” in Proc. Annu. Int. Cryptol. Conf. Springer, 2018, pp. 523–542.

http://www.ciphercloud.com/
http://tinyurl.com/y85obds6

16

[38] J. G. Chamani, D. Papadopoulos, M. Karbasforushan, and I. Demertzis,
“Dynamic searchable encryption with optimal search in the presence of
deletions,” in Proc. 31th USENIX Secur. Symp., 2022, pp. 2425–2442.

[39] C. Huang, D. Liu, A. Yang, R. Lu, and X. Shen, “Multi-client secure
and efficient dpf-based keyword search for cloud storage,” IEEE Trans.
Dependable Secure Comput., vol. 21, no. 1, pp. 353–371, 2024.

[40] Cassandra, “Cassandra,” https://cassandra.apache.org/, August 2024.
[41] MongoDB, “Mongodb,” https://www.mongodb.com/, August 2024.
[42] Redis, “Redis,” https://redis.com/, August 2024.

Chen Zhang is currently an assistant professor at
the Department of Computer Science, The Hang
Seng University of Hong Kong. She received her
B.E. degree in Network Engineering from Harbin
University of Science and Technology in 2017, the
M.E. degree in Computer Science and Technology
from Harbin Institute of Technology, Shenzhen in
2019, and Ph.D. degree in Computer Science from
City University of Hong Kong in 2023. Her research
interests include cloud computing security, mobile
edge computing, federated learning, and blockchain.

Shujin Ye received the BE degree in computer
science and technology from South China Normal
University, the MS degree in software engineering
from South China University of Technology, and the
PhD degree in computer science from Hong Kong
Baptist University. His research interests include
cloud computing and swarm intelligence.

Hai Liu is an Professor with Department of Com-
puter Science, The Hang Seng University of Hong
Kong (HSUHK). Before joining HSUHK, he held
several academic posts at University of Ottawa and
Hong Kong Baptist University. Dr Liu received PhD
in Computer Science at City University of Hong
Kong, and received MSc and BSc in Applied Mathe-
matics at South China University of Technology. His
research interest includes wireless networking, cloud
computing, artificial intelligence and algorithm de-
sign and analysis.

Tse-Tin Chan received his B.Eng. (First Class
Hons.) and Ph.D. degrees in Information Engineer-
ing from The Chinese University of Hong Kong
(CUHK), Hong Kong SAR, China, in 2014 and
2020, respectively. He is currently an Assistant
Professor with the Department of Mathematics and
Information Technology, The Education University
of Hong Kong (EdUHK), Hong Kong SAR, China.
Prior to this, he was an Assistant Professor with the
Department of Computer Science, The Hang Seng
University of Hong Kong (HSUHK), Hong Kong

SAR, China, from 2020 to 2022. His research interests include wireless
communications and networking, Internet of Things (IoT), age of information
(AoI), and AI in wireless communications.

https://cassandra.apache.org/
https://www.mongodb.com/
https://redis.com/

	Introduction
	Problem Definition
	System Model
	Problem Definition
	Threat Model

	Problem Formulation
	Overall Cost of Data Outsourcing
	Problem Formulation

	Optimal Packing of KV Pairs for Encrypted and Compressed KV Stores
	Design Overview
	DualPacking: Two-Dimensional Packing Algorithm
	Length and Frequency Protection for Packs
	Algorithm Analysis

	Implementation of Encrypted and Compressed KV stores with Pattern-Analysis Security
	Construction of Our Design: Static Case
	Construction of Our Design: Dynamic Case

	Security Analysis
	Protection Against Pack Length Pattern Analysis
	Protection Against Pack Frequency Pattern Analysis

	Experimental Evaluation
	Prototype Implementation
	Performance Evaluation

	Related Works
	Secure KV Stores
	Secure Data Compression

	Conclusion
	References
	Biographies
	Chen Zhang
	Shujin Ye
	Hai Liu
	Tse-Tin Chan

