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Abstract—This paper puts forth the first framework for se-
mantic communication (SC)-empowered physical-layer network
coding (PNC), referred to as SC-PNC. Although conventional
bit-oriented PNC can enhance the throughput of wireless relay
networks by turning mutual wireless interference into useful
network-coded information, it faces two primary problems that
limit its application in practice. First, bit-oriented PNC decoding
is susceptible to the relative phase offsets among signals received
from different nodes; in particular, some “bad” relative phase
offsets could lead to significant performance degradation. Second,
the scheduling design of bit-oriented PNC transmissions is limited
by the bitwise operation. To address these issues, this paper
designs SC-PNC, which leverages semantic communication to by-
pass the need for bit-perfect message recovery at the destination.
First, we employ a two-way relay network (TWRN) to demon-
strate how SC-PNC effectively mitigates the detrimental effects of
“bad” relative phase offsets. Then, we explore a triangular relay
network (TriRN) to show how we can take advantage of semantic
communication to redesign the scheduling of PNC transmissions.
Specifically, an SC-PNC TriRN architecture is designed, wherein
each node receives information from the other two nodes in
only two time slots. Taking image delivery as an example,
experimental results reveal that SC-PNC consistently achieves
high and stable image reconstruction quality under different
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channel conditions and relative phase offsets, outperforming
the conventional bit-oriented counterparts. Moreover, the new
two-slot SC-PNC TriRN architecture is effective in extracting
semantically accurate information from images, showcasing its
potential as a low-latency solution for semantic information
exchange.

Index Terms—Semantic communication, physical-layer net-
work coding (PNC), deep learning, PNC scheduling.

I. INTRODUCTION

With the exponential growth in the number of intelli-
gent devices, wireless communications between these smart
devices have generated an unprecedented amount of data,
making wireless spectrum resources a significant bottleneck
in achieving efficient information exchange. As a key tech-
nique to effectively increase spectrum efficiency and enhance
the throughput of wireless networks, physical-layer network
coding (PNC) turns superimposed electromagnetic waves, i.e.,
wireless interference, into network-coded information [1], [2],
which has garnered significant attention in various communi-
cation scenarios over the past decades [1].

A simple representation of PNC is seen in a two-way relay
network (TWRN) [1], as shown in Fig. 1(a). In a TWRN,
two end nodes, nodes A and B, want to send packets to
each other over a wireless medium. Due to the long distance
between nodes A and B or their low transmit power, there is no
direct signal path between them. They need to communicate
with the assistance of a relay node R. The advantage of
PNC over traditional store-and-forward relaying is evident: it
halves the time slots needed for packet exchange, i.e., from
four to two time slots [2]. In the first time slot, the two
nodes simultaneously send packets C4 and C'Z to the relay
in the same frequency band. In the second time slot, the relay
performs PNC decoding on the superimposed received signals
and broadcasts back a network-coded packet C* @ CF to the
nodes. We refer to the network-coded packet C4 @ CP as
a PNC packet, an eXclusive-OR (XOR) of the two source
packets from the end nodes. Upon receiving the PNC packet,
the two nodes subtract their self-packet from the PNC packet
to obtain the packet from another node. As a result, PNC
halves the transmission time and doubles the throughput of a
TWRN.

Conventional PNC studies were focused on the traditional
bit-oriented communication paradigm, aiming at the rapid and
reliable delivery of exact data bits. For example, each node
in a TWRN aims to receive the exact bits from another node,
and the relay tries to decode a bitwise XOR packet of the two



source packets. However, this paper argues that conventional
bit-oriented PNC faces the following two primary problems
that limit its use in practice.

o Problem 1: Bit-oriented PNC decoding is affected by
the relative phase offset among wireless signals of
simultaneously transmitted packets. Successful bitwise
XOR decoding at the relay is critical to the system
performance of all PNC-enabled networks. Taking a
TWRN as an example, prior works revealed that the
bit-oriented PNC decoding performance is adversely af-
fected by the relative phase offset between the signals of
simultaneously transmitted packets from the two nodes
[2], [3]. Specifically, different relative phase offsets lead
to different bit error rate (BER) performances in PNC
decoding. As will be further elaborated in Section III-C,
under “bad” relative phase offsets, when mapping the
superimposed signals to network-coded symbols in PNC
decoding, referred to as PNC mapping, some constella-
tion points mapped to different network-coded symbols
are inevitably overlapped with each other. This leads
to symbol ambiguity in the symbol detection process
and thus degrades the BER performance. While some
approaches have been proposed to mitigate the relative
phase offset issue, they are all bit-oriented solutions
(i.e., minimizing BERs) that cannot solve the problem
completely, even in the absence of noise (see Section II
for the detailed articulation).

e Problem 2: The scheduling design of PNC transmis-
sions in bit-oriented relay networks is limited by the
bitwise operation. To see this, let us consider a PNC-
enabled triangular relay network (TriRN), where three
nodes A, B, and C want to send packets to other nodes via
a relay R. That is, each node aims to receive information
from the other two nodes. To achieve this, a total of
four time slots are needed, instead of two time slots as
a PNC-enabled TWRN does. If the scheduling of PNC
transmissions in the TWRN were used in the TriRN,
the first time slot would be an uplink slot where all
the three nodes send simultaneously. Suppose the relay
decodes a PNC packet C4 @ CB @ C¢ and broadcasts
it back to the users in the downlink slot. The PNC
packet C4 @ CB @ O does not help to recover packets
from other nodes. In general, due to the limitation of
the bitwise operation, side information is required to
utilize PNC packets to recover missing native packets.
Side information could be the self-packet of a node, or
packets obtained in different time slots. As a result, the
conventional scheduling of PNC transmissions in a TriRN
is shown in Fig. 1(b). In the first time slot, nodes A and B
transmit packets C4 and C'B simultaneously. The relay
receives and decodes a PNC packet C4 @ CZ. In the
second time slot, nodes B and C transmit packets CcEB
and C® simultaneously. The relay receives the second
PNC packet CZ @ CC. In the third and fourth time slots,
the relay broadcasts CA®CP and CB@CC, respectively.
Now node A can extract C'® using its own packet C4
and CAaCB. After recovering C' B (CC can be obtained
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Fig. 1: (a) A bit-oriented PNC-enabled two-way relay network:
two end nodes A and B exchange information via a relay node
R; (b) A bit-oriented PNC-enabled triangular relay network:
each node aims to receive information from the other two
nodes via a relay node R.

using CP @ (CP @ CY). Nodes B and C follow a similar
process to extract two packets from the other two nodes
using their own packets and the two broadcast PNC
packets [4]. While the above scheduling design improves
throughput over the store-and-forward relaying (in which
six time slots are needed in total), the design of packet
transmissions in bit-oriented PNC-enabled relay networks
is bottlenecked by the bitwise operation.

Enabled by advanced deep learning technologies, semantic
communication has recently attracted significant attention [5].
Various semantic communication systems based on deep neu-
ral networks (DNNs) were designed for the transmission of
text [6], image [7], and speech signals [8]. In these works, the
“semantics” of the source information is sent to the receiver,
which relates to the content and meaning of the transmitted
messages, instead of the exact bit stream transmission. Hence,
traditional performance metrics such as BER are no longer
applicable in semantic communication that evaluates system
performance from a semantic level. Motivated by the recent
advance of semantic communication, this paper puts forth the
first framework for semantic communication (SC)-empowered
PNC, referred to as SC-PNC, to tackle the limitations of
conventional bit-oriented PNC schemes.

o To solve the relative phase offset problem (Problem 1),
we use TWRN as an example to demonstrate that SC-
PNC can effectively mitigate the detrimental effects of
“bad” relative phase offsets. The key motivation is that
a degraded BER performance does not mean no infor-
mation is received by the receiver. This encourages us
to extract the semantic meaning of transmitted messages
directly instead of ensuring accurate bit stream trans-
mission, thereby mitigating the impact of relative phase
offsets on the PNC performance. As will be presented in
Section IV, we design the first semantic communication-
empowered PNC-enabled TWRN, referred to as SC-PNC
TWRN. We jointly design DNN-based transceivers at
the end nodes and propose a semantic PNC decoder at



the relay. With the help of DNNs, our designed SC-
PNC TWRC realizes semantic PNC decoding at the relay
and the direct extraction of semantic information at the
end nodes. SC-PNC solves the performance degradation
problem in the conventional bit-oriented communication
design that only aims to deliver bit streams reliably.

e To overcome the bitwise limitation in the scheduling
of bit-oriented PNC transmissions (Problem 2), we
use TriRN as an example to show that with SC-PNC,
we can design lower-latency semantic communication-
empowered scheduling of PNC transmissions, hence sig-
nificantly improving communication efficiency. The key
motivation is that the scheduling design in SC-PNC does
not need to follow the bitwise operation since semantic
communication does not require destinations to recover
every bit of the transmitted messages from sources.
Moreover, since only semantic meaning is required, mu-
tual wireless interference among nodes is tolerable to
some extent. Therefore, new semantic communication-
empowered PNC scheduling and transmission can be
designed for a TriRN. As will be detailed in Section V,
we design SC-PNC TriRN, a DNN-based PNC-enabled
architecture for TriRN, where each node receives seman-
tic information from the other two nodes using only two
time slots, thus further reducing communication latency
in semantic meaning exchange.

We employ image delivery as an application example to
validate the effectiveness of SC-PNC. Through an extensive
set of experiments, experimental results reveal that SC-PNC
TWRN can achieve a high and stable peak signal-to-noise ratio
(PSNR), a metric that evaluates the reconstruction quality of
images [5], [9], despite under different signal-to-noise ratios
(SNRs) and relative phase offsets. Furthermore, we show
that the new two-slot SC-PNC TriRN architecture is effective
in extracting semantically accurate information from images,
even when impaired by wireless channels, highlighting its
potential for low-latency semantic communication.

To conclude, we have the following major contributions:

(1) We put forth the first framework for semantic commu-
nication (SC)-empowered PNC, referred to as SC-PNC.
SC-PNC TWRN is used as an example to demonstrate
that SC-PNC can effectively mitigate the detrimental ef-
fects of bad relative phase offsets among signals received
from different nodes.

(2) We put forth SC-PNC TriRN to show that with SC-
PNC, low-latency semantic communication-empowered
scheduling of PNC transmissions can be designed, thus
overcoming the bitwise limitation in the scheduling of
bit-oriented PNC transmissions.

(3) We validate the effectiveness of SC-PNC using image
delivery as an example. SC-PNC is shown to achieve high
and stable image reconstruction quality under different
channel conditions and relative phase offsets, outperform-
ing the conventional bit-oriented counterparts.

II. RELATED WORK

A. Physical-layer Network Coding (PNC)

PNC has received significant attention in recent decades
as it can turn mutual interference between wireless signals
from simultaneous transmitters into useful network-coded in-
formation. PNC was first proposed to increase the throughput
of a TWRN in [1]. Later, the idea of PNC was extended to
various communication models, including both complex relay
networks (e.g., [4]) and non-relay networks (e.g., wireless
multiple access networks in [3], [10]). Under different net-
work topologies, the scheduling of PNC transmissions was
carefully designed, and PNC was shown to improve system
performance under different communication metrics, such as
network latency [4] and age of information (Aol) [11].

As described in Section I, the relative phase offset issue in
PNC decoding affects the performance of the overall system
in all PNC-enabled networks. Several approaches have been
proposed to deal with the effect of “bad” relative phase
offsets. For example, [12] designed special PNC mapping rules
for the bad relative phase offsets such that the overlapping
constellation points are mapped to the same network-coded
symbol. However, such specially designed PNC mapping
rules only apply to the non-channel-coded case and cannot
be easily extended to the channel-coded case. With chan-
nel codes, certain advanced channel decoding methods were
proposed in [2], [13], [14] to mitigate the effect of bad
relative phase offsets. However, they are generally complex
iterative decoding methods that induce significant decoding
latency, which is detrimental in practical implementation. Non-
iterative decoding schemes were investigated in [10], [15],
[16], which however was limited to the binary phase shift
keying (BPSK) modulation only. Moving beyond BPSK, [3]
proposed a non-iterative multiple-antenna receiver for high-
order modulations to increase the degree of freedom of the
relative phase offset. The PNC decoding performance can be
improved because it is not likely that both antennas experience
a bad relative phase offset. Recently, deep learning (DL)-based
approaches have been proposed to solve the network-coded
symbol ambiguity problem [17], [18]. They trained an end-to-
end TWRC using deep neural networks (DNNs), and a DNN-
trained PNC mapping rule was shown to improve the BER
performance. Nevertheless, the DNN-trained PNC mapping
rule was learned from a dataset with only a 0° relative phase
offset. As our experiments in Section VI point out, the system
performance still degrades when the actual relative phase offset
differs from 0°.

All the above prior works focused on the conventional bit-
oriented communication paradigm to design and implement
PNC-enabled networks. In contrast, this paper puts forth a
semantic communication (SC)-empowered PNC framework,
referred to as SC-PNC. We show that our SC-PNC can not
only solve the relative phase offset problem, but also motivate
new PNC scheduling methods, hence significantly improving
communication efficiency.
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Fig. 2: The general architecture of a conventional bit-oriented PNC-enabled TWRN.

B. Semantic Communication

The essence of semantic communication is to deliver the
“meanings” of information. Aided by advanced DL techniques,
the semantics of messages are extracted and interpreted by
well-trained DNNs at both the transmitter and the receiver [5].
Prior studies on semantic communication have been focused
on point-to-point communication systems, aiming to deliver
different types of messages, such as texts [6], [19], images
[7], [20], speeches [8], [21], videos [22], and a combination of
them, i.e., multi-modal data [23]. These works typically trained
a joint source-channel coding (JSCC) by DNNs in an end-to-
end manner. The DL-based JSCC methods were shown to sig-
nificantly improve the adaptability of semantic communication
to various channel conditions. In particular, it was shown that
the semantic information can be “interpreted” successfully at
the receiver even without receiving the complete and accurate
bit information, especially when the SNR is low [24].

Besides point-to-point communication systems, semantic
communication was also studied in various multiuser sys-
tems. For example, [25] proposed a one-to-many semantic
communication system, which uses the semantic features of
different users to build semantic recognizers based on pre-
trained models to distinguish different users, and [26] proposed
a task-oriented multiuser semantic communication framework
to deliver both single-modal and multi-modal data. However,
these works did not consider relay networks. Refs. [27], [28]
studied simple one-way relay networks and compared the se-
mantic information delivery performance under different relay
forwarding methods. Our work also considers relay networks
and focuses explicitly on PNC-enabled relay networks, i.e.,
PNC-enabled TWRNs and TriRNs.

In general, most works on semantic communication focused
extensively on developing advanced DL models (i.e., to build a
common semantic knowledge base at transceivers) to achieve
semantic information delivery. These works do not take into
account the advantage of semantic communication to redesign
wireless communication networks. Since semantic information
can be interpreted even without receiving the complete and
accurate bit information, our work tries to take this advantage
to design new communication network protocols. Specifically,
we use a PNC-enabled TriRN as an example to show that we
can actually design the scheduling of SC-PNC transmission
so that communication efficiency can be further improved.

III. PRELIMINARIES

A. Bit-Oriented PNC-Enabled Two-Way Relay Network
(TWRN)

We first review the general information processing in a
conventional bit-oriented PNC-enabled TWRN, as shown in
Fig. 2. We consider nodes A and B want to exchange messages
M* and MB, i.e., node A sends M* to node B, and node
B sends M” to node A. As an example, messages M 4 and
M are images in this paper. Each node tries to recover the
image from the other node.

To begin with, large messages M A and M?P are source-
encoded into multiple packets CZ-A and CP, i = 1,2,...,
respectively, i.e., the source encoding compresses the original
message into binary bits, from which the original message
can be recovered exactly. Let us consider a time-slotted
system in which a packet C#* or CP occupies one time
slot. Next, channel coding adds redundant bits for detecting
and correcting bit errors in wireless transmissions. Let T'(-)
denote the channel encoding operator, and we assume that
linear channel codes are used in this paper. Then C;! and C?
are channel-encoded into VA = I'(C#') and V;2 = T'(CP),
respectively. After channel coding, VA and V,Z are modulated
into symbol sequences X' = (z2[1],...,23[k],...) and
XP = (2P[1],...,2BK],...), respectively. ! [k] and 27 [K]
are the k-th modulated symbol of nodes A and B, respectively.

In an uplink slot of the TWRN, when nodes A and
B transmit modulated symbols X! and X7 to the relay

simultaneously, the received superimposed signals Y;® =
(yR[1],...,yE[k],...) at the relay can be expressed as
Vi=H!oX?+HEoXP + N, (1)
where HZ = (hd[1],...,hd[k],...) and HE =
(RB[1],...,hBK],...) are the uplink channel coefficients of

the two nodes with respect to the relay, ® represents the
Hadamard product, N® ~ CN (0,0’21) indicates the inde-
pendent and identically distributed (i.i.d.) complex Gaussian
noise vector with variance o2 at the relay, and I denotes a
vector with the same length as X;, where each element is 1.!
The PNC decoder at the relay attempts to decode the linear

I'Since conventional PNC-enabled TWRNs are usually implemented via or-
thogonal frequency-division multiplexing (OFDM) [2], [16], here we employ
an OFDM system where multipath fading can be dealt with by the cyclic
prefix (CP) of OFDM symbols.



combination of C{* and CZ, denoted by C/* @ CP, from the
superimposed signal Y;f*. In other words, C* @ C¥ is the
eXclusive-OR (XOR) of C#! and CP, referred to as a PNC
packet.

In the subsequent downlink slot, the relay channel-encodes
CA@CP into T(CA®CP)=T(CHT(CE)=VAp VS
(note: T'() is linear). Then VA @ V,P is modulated into X7,
which is broadcast to nodes A and B. The received signals at
node A or B is

VK =HE o X+ N¥, K e {A, B}, 2)

where H f and NX represent the downlink channel coef-
ficient and noise term of the wireless link from relay R
to node K € {A, B}, respectively. The signals received
at nodes A and B are demodulated and channel-decoded
into C#* @ CP. Using C# @& CP, node A obtains CZ by
CP =C# o (C ®CP). Node B follows the same manner
to obtain C{* = CP @ (C{* @ CP). Finally, after receiving all
CiA and CiB, 1 =1,2,..., original messages M* and MP

are recovered by source decoding.

B. Bit-Oriented PNC-Enabled Triangular Relay Network
(TriRN)

Besides TWRNs, PNC can be applied to other relay net-
works. For example, [4] identifies nine fundamental building
blocks of complex PNC networks, including the triangular
relay network (TriRN). In a TriRN, each node aims to receive
information from the other two nodes with the help of a
relay. Taking node A as an example, it wants to receive
messages MP and M © from nodes B and C, respectively.
With the bit-oriented communication, as in a TWRN, a large
message M5, K ¢ {A, B,C1, is first source-encoded into
multiple packets C, i = 1,2,.... After channel coding and
modulation, modulated symbols XZ-K are sent from node K.

In a bit-oriented PNC-enabled TriRN, each node receives
two packets, one from each of the other two nodes, in a total
of four time slots. More specifically, in the first time slot,
nodes A and B transmit packets C7 and CZ simultaneously.
The relay receives and decodes a PNC packet C* © CZ. In
the second time slot, nodes B and C transmit packets C’iB
and C¢ simultaneously. The relay receives the second PNC
packet CZ @ CC. In the third and fourth time slots, the relay
broadcasts C* @ CB and CP @ CF, respectively. To recover
other users’ packets, taking node A as an example, it extracts
CP using its own packet C* and C{* & CB. After recovering
CB, CF can be obtained using CP & (C2 @ CF). Nodes B
and C follow a similar process to extract two packets from the
other two nodes using their own packets and the two broadcast
PNC packets. In contrast, without PNC, it is easy to figure
out that a total of six time slots are needed: three for sending
packets from the sources to the relay and three for forwarding
packets from the relay to the destinations [4].

C. The Relative Phase Offset Issue in Bit-Oriented PNC-
Enabled Communication

In the above examples of PNC-enabled TWRN and TriRN,
we have not considered the possibility of PNC decoding failure

at the relay. In practice, successful PNC decoding at the relay
is critical to the overall system performance. Prior works have
shown that conventional PNC decoding at the relay in the
uplink phase is affected by the relative phase offset between
the signals of the two simultaneously transmitted packets,
especially when high-order modulations are used [3]. To see
this, let us consider a TWRN as an example and assume
the use of QPSK modulation. We focus on the k-th received
superimposed symbol y7[k]

yl[k] = iy [k (k] + hi (K] [K] + n[k], 3)

where z! [k] and zZ[k] are the k-th modulated QPSK
symbols of nodes A and B, and x{[k], zB[k] €
{14+j,1—7,-1+4,—1—j}. An important issue in PNC
decoding is how to calculate x{'[k] @ 2P[k] (abbreviated as
2A9P [k]) using the received sample y*[k] in (3). This process
is referred to as PNC mapping. According to [3], to maintain
the linearity of linear channel codes T'(-), the QPSK PNC

mapping rule should be defined as
2 9P [k) = 2 k] @ a7 k] + - (27O k) @ 29k,
=2 (e k] + 5 - (2 Ok k), @)

2

where 2 [k], #M9k] € {=1,1} @P'[k], 2P9[k]) repre-
sents the real and imaginary part of z*[k] (x2[k]), respec-
tively.

To illustrate the effect of relative phase offset on PNC
decoding conveniently, let us consider a noise-free case where
nodes A and B have the same received power at the relay
with uplink channel gains h[k] = 1 and hB[k] = /2%,
and A¢ is the relative phase offset between the signals of
the two nodes. Then the k-th superimposed symbol received
at the relay is yZ[k] = x{[k] + 22[k]e’2?. Under some
“bad” relative phase offsets, if the PNC mapping rule (4) is
used, several constellation points mapped to different network-
coded symbols inevitably overlap. For example, as pointed out
in [3], when A¢ = 90°, the constellation points of symbol
pairs (1 — j,1 — j) and (1 + j4,—1 — j) overlap at 2, i.e.,
(1= + (1= 7)™ = (14j) + (=1 = j)e’* =2, but
they are mapped to 145 and —1 — j, respectively. This means
that when A¢ = 90°, the QPSK mapping rule in (4) can
lead to symbol ambiguity, resulting in a degraded PNC BER
performance, even in the absence of noise. A detailed BER
performance comparison under different A¢ can be founded
in [3].

D. Towards Semantic PNC-enabled Networks

In practice, the relative phase offset is random due to
uncoordinated and distributed transmitters. The overall BER
performance of the PNC decoder is limited by the worst-
case relative phase offset. To deal with this issue, prior
solutions focused on the conventional bit-oriented commu-
nication paradigm that could not completely eliminate the
effect of random relative phase offsets. For example, although
sophisticated iterative PNC decoding schemes [2], [13], [14]
are possible to improve the BER performance under the “bad”
relative phase offsets, such iterative schemes lead to high
complexity and large latency, and therefore are not amenable



to practical implementation. Packet retransmission is another
solution as it introduces diversity and it is only a small
chance that all transmissions experience “bad” relative phase
offsets in a real wireless environment. When PNC decoding
fails at the relay, Automatic Repeat reQuest (ARQ) is often
used so that the sources retransmit the previous packets [11].
Retransmission generally requires more time resources and is
not applicable to low-latency applications as well. However,
if ARQ is not used, maintaining packets in the presence of bit
errors affects the quality of image recovery.

Motivated by the new semantic communication paradigm,
Section IV designs the first semantic communication-
empowered PNC-enabled TWRN, referred to as SC-PNC
TWRN, to address the relative phase offset problem. Thanks to
the jointly designed DNN-based transceivers at the end nodes
and the semantic PNC decoder at the relay, we find that even
with a bad relative phase offset (say, 90°), the two nodes can
exchange accurate meaning on a semantic level.

Following SC-PNC TWRN, Section V further puts forth
a semantic communication-empowered PNC-enabled TriRN,
referred to as SC-PNC TriRN. Since semantic communication
does not require destinations to recover every bit of the
transmitted messages from sources, new PNC scheduling and
transmission can be designed to further reduce latency. We
present a DNN-based PNC-enabled architecture for TriRN,
where each node receives information from the other two
nodes using only two time slots. Recall that even without
packet loss, the bit-oriented PNC-enabled TWRN requires four
time slots. Furthermore, by conveying semantics instead of
all bits of a message, each node transmits less information
in semantic communication than in conventional bit-oriented
communication, which is favorable for low-latency communi-
cation.

IV. SEMANTIC COMMUNICATION-EMPOWERED PNC —
PART I: TWRN

In this section, we first introduce the overall framework of
the proposed SC-PNC TWRN. After that, the DNN implemen-
tation details of SC-PNC TWRN are presented.

A. Overall Framework of SC-PNC TWRN

As in the conventional PNC-enabled TWRN, we consider
that nodes A and B exchange messages M 4 and M5 (e.g.,
images in this paper) via relay R in SC-PNC TWRN. The
system architecture, shown in Fig. 3, consists of three main
components: () an encoder at each node, including a semantic
encoder and a channel encoder, (i7) a semantic PNC decoder
at relay R, and (i%) a decoder at each node, including a
channel decoder and a semantic decoder. We detail these three
components as follows.

1) The Encoder at the End Nodes: In an SC-PNC TWRN,
M* and M?® are encoded into symbol sequences X and
XB using DNNs, which are then sent by the nodes over the
wireless links simultaneously. During the encoding procedure,
two encoders are used at node A or B: the semantic encoder
and the channel encoder. The semantic encoder extracts the
main features (i.e., semantic information) of the message,
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Fig. 3: The overall framework of SC-PNC TWRN.

while the channel encoder encodes the semantic information to
mitigate wireless channel impairments and further compresses
it into transmitted symbols. The detailed DNN implementation
of the semantic encoder and the channel encoder will be
explained in the next subsection.

Let us denote the training parameters of the DNNs for
the semantic encoder and the channel encoder as o« and
f3, respectively. Then the encoded symbol sequences XX,
K e {A B}, is

X5 =5 (s (M) )

where T (-) denotes the semantic encoder with parameters
a, and TG (-) denotes the channel encoder with parameters
B.2 As in the traditional PNC-enabled TWRN, nodes A and
B transmit symbols X SAC and X2 to the relay simultaneously
in an uplink slot (see Fig. 3). We use Y. to denote the su-
perimposed signals received by the relay in SC-PNC TWRN.
At the relay, the semantic PNC decoding of the superimposed
signals Y2 is performed.

2) The Semantic PNC Decoder: Unlike the conventional
PNC decoder discussed in Section III, a key difference of the
semantic PNC decoder is that the relay does not perform a
PNC mapping on the received superimposed signals according
to specific PNC mapping rules (such as (4)). Instead, as shown
in Fig. 3, we adopt a DNN as the PNC decoder for mapping the
superimposed signals to the network-coded symbols broadcast
in the downlink. In other words, the network-coded symbols
broadcast back to the end nodes are directly obtained from the
output of a well-trained DNN.

Prior work [29] pointed out that when training a DNN-
based decoder (in fact, joint training of both encoder and
decoder), the stochastic nature of the channel coefficient H
in fading channels leads to the failure of the DNN model
parameters to converge to the global optimum. As a result,
the channel decoder cannot accurately recover the semantic
information based on a local optimum. Hence, equalization
should be performed to eliminate the effect of channel coeffi-
cients. For example, the channel coefficients can be estimated
via a conventional least-squared estimator [30]. However, for
PNC uplink, nodes A and B generally have different channel

2Note that since the whole TWRN (including the semantic and channel
encoders in each node, the semantic and channel decoders in each node, and
the PNC decoder at the relay) is trained in an end-to-end manner, the DNN-
based semantic encoder and decoder of different users have different weights
in their DNN models.
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Fig. 4: (a) DNN implementation details in SC-PNC TWRN: for ease of illustration, here we only show the information
processing flow from one node to another. The two-way information processing flow can be generalized accordingly. (b) The

general architecture of a residual block.

coefficients, making it impossible to perform equalization for
both nodes simultaneously. To tackle this issue, we input the
channel coefficients of both nodes into the semantic PNC
decoder for jointly learning how to eliminate the effects of the
fading channels. Denote the DNN parameters of the semantic
PNC decoder as 6. The symbols broadcast by the relay, X2,
can be expressed as

XE=H; Y}

sco

HA HE), (6)

where H; () denotes the semantic PNC decoder with param-
eters 0, H2 and HP are the uplink channel coefficients of the
two nodes with respect to the relay. Nodes A and B receive
signals Y2 and Y.Z in the downlink, respectively.

3) The Decoder at the End Nodes: Similar to the encoder,
the decoder also consists of two parts: the channel decoder and
the semantic decoder. As in the traditional bit-oriented PNC-
enabled TWRN, a node combines the network-coded symbols
received from the relay with the symbols it sent to recover
the symbols from the other node. In SC-PNC, the channel
decoder performs the same procedure and obtains the semantic
information of the message from the other node. The semantic
decoder then reconstructs the message based on this semantic
information. Both the channel decoder and semantic decoder
are implemented using DNNs. Let 7 and ¢ denote their DNN
parameters, respectively. The reconstructed message at node
A (i.e., the message sent by node B) is expressed as

M° =R, (R (X4, 7:4)) ™
where Ry (+) denotes the channel decoder with parameters
n and R, () denotes the semantic decoder with parameters
®. }7‘;2 =YA/H 514 denotes the received symbols after equal-
ization using the downlink channel coefficients H, 34 from the
relay to node A. The reconstructed message at node B can be
obtained in the same manner.

B. DNN Implementation Details in SC-PNC TWRN

We now describe the DNN implementation of each com-
ponent in SC-PNC TWRN, as shown in Fig. 4. For ease of
illustration, Fig. 4(a) only shows the information processing
flow from one node to another. The two-way information
processing flow can be generalized accordingly. First, a batch

TABLE I: Parameter Settings for the Semantic Enc/Decoder.

ConvLayer Parameter Settings
filters 128,128; 256,256
Semantic Encoder* Conv2D kernel size 3,3; 3,3
stride 2,1; 2,1
filters 64,64; 128,128
Semantic Decoder TransConv2D | kernel size 3,3; 3,3
stride 1,2, 1,2

* For example, since the semantic encoder has two ResBlocks Tx, each
consisting of two Conv2D, the filter parameters corresponding to the four
Conv2D are 128, 128, 256, and 256, respectively.

of b images, M € R'"™wx¢ K ¢ {A, B}, are input to the
encoder for training the DNNs, where R denotes the set of
real numbers. Here b is the batch size, & is the height of each
image, w is the width of each image, and ¢ corresponds to
the number of channels of the image (i.e., ¢ = 1 for grayscale
images, and ¢ = 3 for color images in RGB format). Each
pixel value of the images is normalized to a range of [0, 1].

As shown in Fig. 4(a), the implementation of the semantic
encoder starts with a two-dimensional convolutional (Conv2D)
layer with an exponential linear unit (ELU) activation function,
followed by two residual blocks. Fig. 4(b) shows the general
architecture of a residual block. The ConvLayers in ResBlock
Tx are Conv2D, and the detailed parameters of Conv2D in the
two ResBlock Tx of the semantic encoder are summarized in
Table I. The ResBlock Tx downsamples the source image and
extracts the higher-level image features. After the semantic
encoder, we can obtain a batch of b semantic features f €
RT%% X256 of the images in our implementation.

To map the semantic feature f of the images to transmitted
symbols, the channel encoder consists of several ResBlock
and attention feature (AF) modules, where each ConvLayer
in ResBlock has 256 filters with kernels of size 3 x 3 and a
stride size of 1. The AF Modules are introduced in the channel
encoder to improve robustness in different SNR regimes [31],
which takes the SNR and semantic features as the input to
produce channel-aware features. After passing through the
Conv2D with an ELU activation function, we obtained a batch
of b transmitted symbols XX € C™*1 K € {A, B}, by re-
shaping and mapping the output of the Conv2D to the real and
imaginary parts of the transmitted symbols. Here C denotes



the set of complex numbers, and m is the total number of
transmitted symbols. Following [32], we refer to the dimension
of the source signal h x w X ¢ as the source bandwidth and the
dimension of output symbols m as the channel bandwidth. The
channel bandwidth ratio of SC-PNC systems is then defined
as pse = m/(h x w x c), i.e., a larger channel bandwidth
ratio indicates that each pixel in the image occupies more
channel resources. Finally, a normalization layer is required
on transmitted symbols X7 (X2) to ensure a unit transmit
power constraint, i.e., E ||Xf§||2 =1, K € {A,B}.

When the relay receives a batch of b superimposed signals
YE € C™*!, the real and imaginary parts of the received
superimposed symbols are concatenated with the channel
coefficients H4 and H? and passed together to the semantic
PNC decoder. With respect to Fig. 4(a), the semantic PNC
decoder consists of several ResBlock and AF Modules. Each
ConvLayer in the two ResBlock of the semantic PNC encoder
has 256 filters with kernels of size 3 x 3 and a stride size of 1.
After passing through a Conv2D layer with an ELU activation
function and normalization layers, the relay obtains a batch of
b network-coded symbols, Xt € C™*1,

At the end nodes, the channel decoder first concatenates
symbols X X transmitted by node K and the received network-
coded symbols VX sent by the relay through a concatenate
layer, which is then reshaped and passed through the Conv2D
with an ELU activation function layer. Later, several ResBlock
and AF Module are used, where each ConvLayer in a Res-
Block also has 256 filters with a kernel size of 3 X 3 and a
stride size of 1. After the channel decoder, we obtain a batch of
b estimated semantic features f € R X% *256 of the images.

Images are recovered by passing f to the semantic decoder.
Each ConvLayer in a ResBlock Rx is now a TransConv2D
layer for upsampling the image features and recovering the
size of the image. The parameters of TransConv2D in the two
ResBlock Rx of the semantic decoder are summarized in Ta-
ble I. Note that the activation function in the last TransConv2D
of the semantic decoder is sigmoid instead of ELU in our
implementation. Finally, the de-normalization layer rescales
each value of the image pixels back to the range of [0, 255]. A

batch of b images are reconstructed as M (M) € Rxwxe,

C. Loss Function in DNN Training

In image delivery applications, the objective of SC-PNC-
TWRN is to reconstruct images as accurately as possible,
i.e., to minimize the average distortion between a transmitted
image and its reconstructed one. Hence, we adopt the mean
squared error (MSE) as the loss function in the DNN training.
As an example, suppose that the original image and the
reconstructed image are grayscale images with size h X w,
denoted by M and M respectively. The MSE between M
and M is

h w

MSE(M,M) = ﬁ SN (Mi,j - M”)2 (8)

i=1 j=1

where M, ;(M; ;) represents the pixel value at the position
(i,7) of the image. The loss function in training SC-PNC
TWRN is defined as
1 & A B
_ A 7 B 7
Lase =2 [MSE (Mn,Mn) + MSE (MWM )] ,

n

€))

where MSE(MA, M) (MSE(MPE,N")) is the MSE
between the n-th transmitted image M fL‘(M f ) and the recon-

n=1

~ A B
structed image M, (M,,), and N is the number of images.

V. SEMANTIC COMMUNICATION-EMPOWERED PNC —
PART II: TRIRN

As presented in Section III-B, a bit-oriented PNC-enabled
TriRN requires four time slots in total for each node to receive
two packets from the other two nodes. With the help of
semantic communication, this section presents a new DNN-
based TriRN architecture that requires only two time slots
for each node to receive semantic information from the other
two nodes. We refer to this new TriRN architecture as SC-
PNC TriRN. After that, we present how to extend the DNN
implementation from TWRN to TriRN.

A. DNN-based PNC-Enabled TriRN Architecture: SC-PNC
TriRN

Following the idea of SC-PNC TWRN, we put forth SC-
PNC TriRN where each node wants to receive semantic
information from the other two nodes, e.g., node A wants
to recover messages M B and MC from nodes B and C,
respectively. SC-PNC TriRN requires only two time slots to
complete such information exchanges among the three nodes,
whose system architecture is shown in Fig. 5. As in SC-
PNC TWRN, the first time slot is an uplink slot, in which
the three nodes send messages to the relay simultaneously,
and the relay maps the superimposed signals into network-
coded information. In the second time slot, the relay broadcasts
network-coded information to the three nodes, and each node
tries to extract semantic information from the other two users
via the broadcast network-coded information and its self-
information.

The whole SC-PNC TriRN system also consists of three
main components: the encoder at each node, the semantic PNC
decoder at relay R, and the decoder at each node, as detailed
in the following. In an uplink slot, messages M A, ME , and
M€ are encoded into symbol sequences X A XB and X€
through a semantic encoder and a channel encoder. We remark
that in an uplink slot, the bit-oriented PNC-enabled TriRN
allows only two out of the three nodes to transmit signals over
the wireless channel simultaneously. However, SC-PNC TriRN
allows all the three nodes to transmit signals simultaneously,
as shown in Fig. 5. Hence, the received superimposed signals
Y. at the relay in an SC-PNC TriRN uplink is

YE=—pgloXxA+HP o xE+HS 0 XS+ NE, (10)

where H, HE, and HS are the uplink channel coefficients
of the nodes with respect to the relay and N7 indicates the
i.i.d. complex Gaussian noise vector.
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Fig. 5: The overall framework of SC-PNC TriRN. All nodes
A, B, and C have the same encoder and decoder architecture,
so only the detailed DNN architecture of node A is shown in
the figure.

At the relay, as in SC-PNC TWRN, the network-coded
symbols broadcast back to the end nodes are obtained from
the output of the semantic PNC decoder, i.e., a well-trained
DNN-based PNC mapping from the superimposed signals to
the network-coded symbols. Note that since the superimposed
signals Y2 received by the relay R now contain information
from the three nodes, the channel coefficients of all three nodes
need to be fed into the semantic PNC decoder to jointly learn
and obtain the network-coded symbols. Thus, the network-
coded symbols broadcast by the relay, XZ, in an SC-PNC
TriRN can be reformulated as

xE=u; v o}

sc? u

Hp oY), (11)

where Hj (+) denotes the semantic PNC decoder in SC-PNC
TriRN with parameters §. Notice that for consistency, we use
the same notation ¢ as in SC-PNC TWRN to denote the DNN
parameters of the semantic PNC decoder in SC-PNC TriRN; in
practice, the trained DNN parameters in the two architectures
are different.

In the downlink slot, X ﬁ is broadcast to nodes A, B, and
C, and they receive signals Y2, Y2, and Y¢, respectively.
Instead of recovering only one message from the opposite node
as in SC-PNC TWRN, the decoder of each node in SC-PNC
TriRN tries to recover two messages from the other two nodes
(see Fig. 5). Specifically, let  and ¢ denote the DNN parame-
ters of the channel decoder and semantic decoder, respectively.
By combining the received network-coded information and its
self-information, the two reconstructed messages sent by nodes
B and C at node A can be expressed as

B . C -

[M s } ~ R (Rg (XAYA)) , (12)
where }7;3 denotes the received symbols after equalization,
R () denotes the channel decoder with parameters 7 and
RS (-) denotes the semantic decoder with parameters ¢.
Notice again that we use the same DNN parameter notations
as in SC-PNC TWRN for consistency.

B. DNN Implementation From SC-PNC TWRN to SC-PNC
TriRN

The DNN implementation of each component in SC-PNC
TriRN is the same as that of SC-PNC TWRN, except for the
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Fig. 6: The semantic decoder implementation details in (a)
SC-PNC TWRN, and (b) SC-PNC TriRN: the differences lie
in the parameter setting of the filters in the last TransConv2D
layer.

setting of the last TransConv2D layer in the semantic decoder,
as compared in Fig. 6(a) and Fig. 6(b). In SC-PNC TriRN,
after passing through the channel decoder, we obtain a batch of
b estimated mixture semantic features f € R X% %256 for the
images from the other two nodes. The semantic decoder then
reconstructs both messages from the other two nodes based
on this “mixed” semantic information. As shown in Fig. 6(b),
the semantic decoder in SC-PNC TriRN also contains two
ResBlock Rx and one TransConv2D (the parameters of the two
ResBlock Rx are summarized in Table I). Since the semantic
decoder of each node now needs to recover two images
simultaneously, as shown in Fig. 6(b), the last TransConv2D
of the semantic decoder is set to 2¢ convolutional filters,
comparing to c in Fig. 6(a) of SC-PNC TWRN, where c
corresponds to the number of channels of the image. Finally,
the semantic decoder in SC-PNC TriRN outputs a h x w X 2¢
dimensional tensor that is reshaped into two separate images
with a size of h X w x c¢. The de-normalization layer rescales
each value of the image pixels back to the range of [0, 255].

VI. EXPERIMENTAL EVALUATION

This section evaluates the performances of our proposed SC-
PNC schemes. Specifically, the image recovery performance is
evaluated by PSNR, a metric that measures the reconstruction
quality of images. Section VI-A first presents the setup for our
experiments, including the training details and benchmarking
schemes. Section VI-B examines how SC-PNC solves the
relative phase offset problem compared to the conventional
bit-oriented schemes, using SC-PNC TWRN as an example.
Section VI-C demonstrates that SC-PNC TriRN can achieve
low-latency communication with a high PSNR in both additive
white Gaussian noise (AWGN) and block Rayleigh fading
channels. In addition to the PSNR evaluation, Section VI-D
further considers object classification tasks on images to better
evaluate the semantic information recovery performance.

A. Experimental Setup

To evaluate the performance of SC-PNC TWRN and SC-
PNC TriRN, we consider using the MNIST handwritten digit
dataset [33] in our experiments. The MNIST dataset consists
of 70,000 images (60, 000 for training and 10, 000 for testing)
of handwritten digits (zero to nine). The MNIST digits are
grayscale images, each with 28 x 28 pixels, and each pixel is
represented by a single intensity value in the range 0 (black)
to 1 (white).



We first explain the implementation of our proposed SC-
PNC TWRN. We implement SC-PNC TWRN using Tensor-
Flow 2.8 [34]. The Adam optimizer [35] is adopted to train the
DNNs. We set the training batch size to b = 128 and fix the
learning rate to 0.001. For each training batch, each node sends
b MNIST training images to the other node. Both AWGN
and block Rayleigh fading channels are considered in the
experiments. The uplink and downlink transmissions between
a node and the relay are assumed to have an equal SNR. In
addition, nodes A and B have the same SNR with respect to the
relay, which is uniformly generated between 0dB and 16dB.
Hence, the overall training dataset for SC-PNC TWRN can be
represented by {(M;', M} H;', HE, SNR;)}N, where
N is the total number of training image pairs. Notably, for
AWGN channels, since |H;4z = |HP,| = 1, it is equivalent
to having a training data set { (M2, M2 A¢AB SNR;)}Y,,
i.e., the relative phase offset A¢“Z between nodes A and B in
a TWRN is uniformly generated between 0° and 360° for each
pair of transmitted images M fl and M ZB during the training
process.

For SC-PNC TriRN, we use the same DNN hyperparameters
as in SC-PNC TWRN. To construct the training dataset,
the SNR is uniformly generated between OdB and 16dB
in both uplink and downlink transmissions. Therefore, the
overall training dataset for SC-PNC TriRN can be represented
by {(M} M7 M HY, HE, HS, SNR;)}Y,, where N
is the total number of training image triples. For AWGN
channels, the training dataset is reduced to
(M2, MP, M, AP, AP, SNR;)HY,, where AgAE
(AP €Y denote the relative phase offset between nodes A and
B (nodes B and C). (Note: the relative phase offset between
nodes A and C, A¢“%, can be derived from A¢p45 and ApB¢
by ApAC = (A¢pAB + ApPY) mod 360, where mod denotes
the modulo operator.) In other words, A¢*Z or A¢pBC is
uniformly generated between 0° and 360° for each triple of
transmitted images M ;4, M5B, and M ZC

For benchmarking purposes, we consider the following two
schemes:

(1) Conv-PNC: This is the conventional PNC-enabled
TWRN or TriRN described in Section III.°> The rate-
1/2[133,171]4 convolutional codes defined in the IEEE
802.11 standards [16] are used for channel coding. QPSK
is used (i.e., two source bits per symbol). At the relay,
the so-called XOR channel decoding (XOR-CD) [3] is
used to decode the PNC packet. The XOR-CD decoder
maintains the linearity of convolutional codes when per-
forming the QPSK PNC mapping (4). To demonstrate
the end-to-end performance of image recovery, when the
relay fails to decode a PNC packet (e.g., the decoded
packet does not pass the cyclic redundancy check), the
relay will still forward the decoded packet in the presence
of bit errors in the downlink. As such, the numbers
of time slots for conventional PNC-enabled TWRN and

3For simplicity and comparison with D-PNC and SC-PNC, end nodes send
images directly without source coding. An image is simply divided into several
packets, followed by channel coding and modulation.

TriRN are two and four, respectively, as described in
Section III.

(2) D-PNC: In [17], a DNN-based PNC TWRN scheme (D-
PNC) was proposed. Still, the D-PNC scheme is bit-
oriented, aiming to minimize the BER of decoded PNC
packets at the relay. We reproduce a D-PNC TWRN using
the same hyperparameter settings described in [17]. A
joint channel coding and modulation scheme is obtained
by training the DNNs. Specifically, each symbol sent by
the end nodes is a DNN-trained QPSK modulated symbol
(instead of a regular QPSK modulated symbol in Conv-
PNC), containing two source bits. Moreover, we follow
[17] to set the relative phase offset A¢ to 0° in the
training process. As will be discussed in Section VI-B,
due to the bit-oriented nature of the D-PNC TWRN, the
image recovery performance of the D-PNC TWRN is
significantly degraded when the relative phase offset used
in training differs from the one used in testing. Therefore,
we do not extend the D-PNC TWRN in [17] to a D-PNC
TriRN.

Since image delivery applications are usually concerned
with how similar the reconstructed image is at the receiver
compared with the transmitted image, we measure the per-
formances of different systems in terms of PSNR, which
measures the squared intensity difference between the re-
constructed and original image pixels [9]. Specifically, for
a grayscale image of size h x w, the PSNR between the
transmitted image M and the reconstructed image M is
defined as

(MAXp)?

PSNR = 10log;, | ——— 2/
MSE(M, M)

) dB, (13)
where M AXpy is the maximum possible pixel value of the
transmitted image, and M SE(M, M) is the MSE between
the transmitted image M and the reconstructed image M.
Note that Conv-PNC and D-PNC directly use the received
image, possibly with incorrect pixel values, as M to calculate
PSNR. If the MSE between the transmitted image and the
reconstructed image is smaller, the PSNR is larger and the
reconstruction quality of the image is better.

B. Performance Evaluation of SC-PNC TWRN

We first evaluate the performance of TWRNs under different
schemes. Fig. 7 plots the PSNR of Conv-PNC, D-PNC, and
SC-PNC TWRN under different SNRs, when the relative phase
offset ApA B is (a) 0°, (b) 45°, and (c) 90° in AWGN channels.
The channel bandwidth ratio of SC-PNC TWRN is set to
psc = 1/3. When testing the PSNR performances, we consider
an SNR-balanced scenario in which nodes A and B have the
same SNR in both uplink and downlink transmissions, varying
from —3dB to 6dB. In addition, the PSNRs of the two end
nodes are evaluated separately. For the legends in Fig. 7, as
an example, SC-PNCp(TWRN) represents SC-PNC TWRN
when node A sends to node B, i.e., the PSNR is measured at
node B.

Fig. 7 shows that the PSNR increases with SNR for all three
systems. In particular, when the relative phase offset Ap4% is
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Fig. 7: PSNR performance of Conv-PNC, D-PNC, and our proposed SC-PNC TWRN under different SNRs when the relative
phase offsets are (a) 0°, (b) 45°, and (c) 90° in AWGN channels, where SC-PNC TWRN transmits with a bandwidth ratio of

pse = 1/3.

0° (see Fig. 7(a)), D-PNC outperforms Conv-PNC because
D-PNC jointly trains the channel coding and modulation
scheme by deep learning and achieves lower BERs than the
separately designed schemes in Conv-PNC. Furthermore, SC-
PNC TWRN outperforms D-PNC when the SNR is low. At
low SNRs, D-PNC suffers from high BERs due to poor
channel conditions, resulting in low PSNRs. However, SC-
PNC TWRN can still recover useful semantic information at
low SNRs. In addition, D-PNC performs better than SC-PNC
TWRN when the SNR is high, because D-PNC can reconstruct
the transmitted image with accurate pixel values (i.e., without
bit errors). By contrast, SC-PNC TWRN recovers images at
the semantic level and does not obtain exact pixel values of the
original image as D-PNC does. This phenomenon is consistent
with previous works on semantic communication [7].

Fig. 7(b) and (c) show the PSNR performance against SNR
when the relative phase offsets A¢AB are 45° and 90°. As
shown in both figures, Conv-PNC and D-PNC suffer from
performance degradation compared with Fig. 7(a) when A¢
is 0°. For Conv-PNC, the increase in A¢2Z reduces the
Euclidean distance between constellation points mapped to
different XOR symbols, thus degrading the BER performance
[3] (lowering the PSNR as well). For example, when A¢4 7 is
90°, there are different XOR symbols overlapping each other
with a Euclidean distance of zero. This leads to XOR symbol
ambiguity when the QPSK PNC mapping rule (4) is used. For
D-PNC, it only considers A¢A® = 0° during the training
process. When the actual A¢AP is different from the one
in training, the joint channel coding and modulation scheme
learned from the training data does not work well. In other
words, to achieve a good PSNR performance, the DNNs of D-
PNC should be re-trained to facilitate different relative phase
offsets.*

Fig. 7(b) and (c) show that SC-PNC TWRN outperforms

4To be fair, we also train D-PNC by generating A¢A 5 uniformly between
0° and 360° for each pair of Mf and MZB as SC-PNC does. However,
this approach leads to poor BER/PSNR performances under all A¢45 . This
indicates that a unified joint channel coding and modulation scheme aimed at
low BERs cannot be learned by DNNs when the relative phase offset varies.
In contrast, SC-PNC performs well as it recovers the semantic meaning of
the images instead of the exact bit information.

both Conv-PNC and D-PNC under all SNR values. Compared
with Conv-PNC (with the QPSK PNC mapping (4)), which
leads to XOR symbol ambiguity when A¢4E is 90°, SC-
PNC TWRN does not rely on a specific PNC mapping rule and
learns an appropriate rule via DNNs, thus avoiding the symbol
ambiguity problem and improving the PSNR performance.
While D-PNC also learns the PNC mapping via DNNS, it
is designed based on minimizing BERs. When the trained
A¢AP is different from the tested A¢“ P, an improper PNC
mapping learned from DNNs leads to a degraded BER perfor-
mance. With the new semantic communication paradigm, SC-
PNC TWRN introduces the semantic encoder/decoder jointly
trained with the channel encoder/decoder in the transceiver
design. By doing so, messages are directly recovered at the
semantic level instead of the bit level. At the semantic level,
experimental results show that there is no need to worry about
the disparity between the trained and the tested A¢*B. For
example, when we generate A¢“” randomly between 0° and
360° in the training process, Fig. 7 indicates that SC-PNC
TWRN can achieve a high and stable PSNR under different
SNRs and relative phase offsets.

C. Performance Evaluation of SC-PNC TriRN

We now evaluate the PSNR performance of SC-PNC TriRN.
Let us first consider AWGN channels as shown in Fig. 8. In
this experiment, the channel bandwidth ratio is set to 1/3 for
all SC-PNC systems. For the legends in Fig. 8, as those in
Fig. 7, SC-PNCpga (TriRN) represents the PSNR performance
when node A recovers the image from node B in SC-PNC
TriRN.

The previous subsection has demonstrated that SC-PNC
TWRN can achieve a stable PSNR performance under dif-
ferent relative phase offsets. Similarly, as indicated in Fig. 8,
SC-PNC TriRN also has a stable PSNR under different relative
phase offset pairs (A¢AB, ApBC). Specifically, Fig. 8 plots
the PSNRs of SC-PNC TriRN in two scenarios when (1)
ApAB = ApBC = 90° and (2) ApAE = 0°, ApBC = 90°.
We observe that the PSNRs in the two scenarios are almost
identical when node A recovers the images sent by nodes B
and C. Thus, we omit the results of other relative phase offset
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Fig. 8: PSNR performances of SC-PNC TriRN, SC-PNC
TWRN and Conv-PNC in AWGN channels, where SC-PNC
schemes transmit with a bandwidth ratio of ps. = 1/3.

pairs in Fig. 8 (as well as in subsequent AWGN results). In
addition, since each node in SC-PNC TriRN has the same
encoder/decoder structure and all nodes have the same SNR,
we only consider the image recovery performance at node A
for clear presentation.

Fig. 8 plots the PSNRs of Conv-PNC schemes as bench-
marks. In our experimental results, the Conv-PNC TriRN and
TWRN have almost the same PSNR performance. In fact,
the PSNR performance of the Conv-PNC TriRN is no better
than its TWRN counterpart. Recall the four-slot scheduling of
a Conv-PNC TriRN described in Section III-B. Considering
node A, if the relay fails to decode C*@CP but still forwards
the PNC packet in the presence of bit errors in the downlink,
the recovered Cf will also contain bit errors (i.e., node A tries
to extract CZ by using its own packet C;* and the forwarded
C# @ CB). This further affects the recovery of CC when
using the error-prone CZ and CZ @ CE (even if CE @ C¢
is error-free). Thus, the PSNR performance of node A in a
Conv-PNC TriRN is worse than that in a Conv-PNC TWRN.
Now considering node B, when it tries to recover Cf‘ and Cf s
whether the recovery of C# (using its own packet CZ and the
forwarded C{* ® C'P) is error-free does not affect the recovery
of C (using its own packet CZ and the forwarded CZ @ CY).
Hence, the PSNR performance of node B in Conv-PNC TriRN
is the same as that in Conv-PNC TWRN. Overall, the PSNR
performance of the Conv-PNC TriRN is upper-bounded by the
PSNR performance of its corresponding TWRN. Therefore,
in Fig. 8, we use Conv-PNC TWRN to represent the PSNR
performance of both schemes.

Furthermore, it is possible to use the SC-PNC TWRN to
implement an SC-PNC TriRN following the conventional four-
time-slot scheduling, which we call the four-slot SC-PNC
TriRN. Following the same discussion about the Conv-PNC
TriRN and TWRN above, the PSNR performance of the four-
slot SC-PNC TriRN is no better than the PSNR performance of

SC-PNC TWRN. Thus, we use SC-PNC TWRN to represent
the PSNR performance of both schemes as benchmarks in
Fig. 8.

Comparing the achieved PSNR of SC-PNC TriRN with
its benchmarks, Fig. 8 shows that SC-PNC TriRN gener-
ally achieves a better PSNR performance than Conv-PNC,
which is consistent with the TWRN results in the previous
subsection. Moreover, SC-PNC TriRN can achieve a similar
PSNR performance to SC-PNC TWRN. As demonstrated in
Fig. 8, the PSNR achieved by SC-PNC TriRN is slightly
lower than SC-PNC TWRN. This is because each node in
SC-PNC TriRN now needs to recover two images of the
other two nodes simultaneously, where the signals of the
other two nodes interfere with each other. This indicates that
mutual interference among nodes is tolerable to some extent
because only semantic meaning is required, which can be
extracted by DNNs. Moreover, as presented in Section V-B,
the DNN implementation of SC-PNC TriRN is the same as
that of SC-PNC TWRN, except for the setting of the last
TransConv2D layer in the semantic decoder. The similar PSNR
performance eases practical system designs where different
network topologies are possible.

In Fig. 8, each node in SC-PNC TriRN transmits an image
with a bandwidth ratio of p = 1/3, i.e., an MNIST image
is sent via |28 x 28 x 1/3| = 261 symbols. In Conv-PNC,
one pixel is represented by an eight-bit integer. After channel
coding and modulation, each image is encoded using 6272
symbols. This shows that SC-PNC TriRN consumes fewer
channel resources and less airtime to send an image than
Conv-PNC, but achieves a significantly better PSNR. More
importantly, compared with the four-slot SC-PNC TriRN,
a two-slot SC-PNC TriRN where all the three nodes send
simultaneously in the first time slot further reduces the time
required to exchange images for each node while obtaining
similar PSNR performances. Therefore, our new two-slot SC-
PNC TriRN architecture is a viable solution to low-latency
semantic communications.

We now present the performances of different schemes
under Raleigh fading channels, where the PSNRs of SC-
PNC TriRN, SC-PNC TriRN, and Conv-PNC versus SNR
are plotted in Fig. 9(a). We observe that SC-PNC TriRN can
still achieve similar PSNR performance as SC-PNC TWRN
over the entire SNR range. For Conv-PNC, the random phase
offsets in the channel gains under Rayleigh fading channels
exacerbate the relative phase offset problem. SC-PNC TriRN
and SC-PNC TWRN significantly outperform Conv-PNC in
PSNR, indicating that our SC-PNC schemes can also extract
useful semantic meanings under Raleigh fading channels.
Furthermore, Fig. 9(b) compares the original and reconstructed
images under different transmission schemes when the SNR
is 9dB. We see in Fig. 9(b) that it is difficult to identify
the digits on the reconstructed images delivered by Conv-
PNC. By contrast, we can easily recognize the digits on the
reconstructed images delivered by SC-PNC, although the exact
pixel values in the reconstructed images may not be the same
as the original ones. Such visualization results are consistent
with the PSNR performances plotted in Fig 9(a).
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Fig. 10: Classification accuracy performance of different schemes in (a) AWGN channels (zero relative phase offsets) and (b)
Rayleigh fading channels with different channel bandwidth ratios.

D. Performance of Image Classification

Previous subsections consider PSNR as the performance
metric to compare the image reconstruction performance of
different schemes. However, PSNR measures the MSE be-
tween the transmitted image and the reconstructed image
only, i.e., a smaller MSE indicates a larger PSNR, so the
reconstruction quality of the image is better. Hence, PSNR is
unrelated to the true semantic information shown in images.
In this subsection, we consider image classification and adopt
classification accuracy as a performance metric for an image
semantic communication system using the MNIST dataset.
Specifically, we use a pre-trained vision transformer (ViT)
[36] to recognize the digits on the reconstructed images,
where the ViT classifies the digits by understanding image
features so that the true semantic information of images can
be extracted. We collect the classification accuracy based
on the output of the ViT using the reconstructed images
delivered by SC-PNC TriRN, SC-PNC TWRN, and Conv-
PNC, respectively. A higher classification accuracy indicates

better system performance.

Fig. 10(a) and (b) plot the classification accuracy of dif-
ferent schemes under AWGN channels and Rayleigh fading
channels, respectively. In general, the classification accuracy is
consistent with the PSNR performances presented in previous
subsections. For example, we observe in Fig. 10 that the
classification accuracy using the images delivered by Conv-
PNC is low, especially when the SNR is small, which further
confirms that Conv-PNC suffers from the relative phase offset
problem and can hardly recover the semantic meaning of
images. In contrast, the classification accuracy of SC-PNC
TWRN and SC-PNC TriRN is much higher than that of Conv-
PNC, even when a smaller channel bandwidth ratio ps. = 1/5
is used. When the SNR is high, all the three schemes have
almost the same classification accuracy. However, as explained
earlier, the SC-PNC schemes consume fewer channel resources
and less airtime than Conv-PNC to deliver the semantic infor-
mation of an image. Overall, both the PSNR and classification
accuracy metrics indicate that our proposed SC-PNC schemes



can extract accurate semantic information with low latency
from images impaired by wireless channels.

VII. CONCLUSION

We have presented the first semantic communication-
empowered PNC framework, referred to as SC-PNC, to tackle
the limitations of conventional bit-oriented PNC schemes.
Specifically, SC-PNC solves the relative phase offset problem
in bit-oriented PNC decoding and overcomes the bitwise
limitation in the scheduling of bit-oriented PNC transmissions.

Conventional bit-oriented PNC decoding is affected by
the relative phase offsets among wireless signals of simul-
taneously transmitted packets. We use SC-PNC TWRN as
an example to demonstrate the feasibility of using the new
semantic communication paradigm to tackle the bad relative
phase offset in PNC decoding. With the help of DNNs, our
designed SC-PNC TWRN realizes semantic PNC decoding at
the relay and direct extraction of semantic information at the
end nodes. This solves the performance degradation problem
in the conventional bit-oriented communication design that
only aims to deliver bit streams reliably. Experiments on
image delivery show that SC-PNC TWRN outperforms its
bit-oriented benchmarks by achieving high and stable PSNR
performance at different relative phase offsets.

Furthermore, while the scheduling design of conventional
bit-oriented PNC transmissions is limited by the bitwise oper-
ation, we put forth SC-PNC TriRN to show that the scheduling
of SC-PNC does not need to follow the bitwise operation.
Since mutual wireless interference among nodes is tolerable
to some extent when only semantic meaning is required, we
design SC-PNC TriRN to allow each node to receive infor-
mation from the other two nodes using only two time slots.
Experimental results on PSNR and classification accuracy
indicate that the new two-slot SC-PNC TriRN architecture
extracts semantic information accurately with low latency
from images impaired by wireless channels. Although this
paper focuses on SC-PNC TriRN only, the insight of taking
advantage of semantic communication to redesign wireless
communication network protocols generally applies to other
network typologies, which is a promising direction to further
improve the performances of communication networks.
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