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Abstract—With the rapid advancement of robotics technolo-
gies, a group of robots are able to communicate with one another
by wireless transmissions and form a robot swarm. Robot swarm
has many applications and a typical one is target search in
which swarm robots are sent to places that might be dangerous
for human workers, and they coordinate with one another to
search for targets such as survivors in a disaster. However, motion
coordination of swarm robots for target search has received little
attention especially when the targets are mobile. In this work,
we develop a motion coordination algorithm for swarm robots
to search for targets in an unknown area. Our basic idea is to
divide the search area into grids and build a gray-scale map
in which each grid is associated with a gray scale indicating the
efficiency of searching targets in this grid. The Voronoi diagram is
adopted to coordinate swarm robots to search different portions
of the search area for maximizing search efficiency. By theoretical
analysis, our motion coordination algorithm is validated to ensure
that all static targets are guaranteed to be found. We derive an
upper-bound on the total time for robots to traverse all the grids
in the search area. Extensive simulations are conducted and the
results show that the proposed motion coordination algorithm
outperforms the state-of-the-art and achieves a success rate of
over 90% in finding all mobile targets with low search latency.

Note to Practitioners—This paper was motivated by the prob-
lem of target search in an unknown area (e.g., the search for
Malaysia Airlines MH370). With advanced robotics technologies,
swarm robots could be sent to the area to perform a search
mission. This work suggests a motion coordination algorithm for
swarm robots to search for both static and mobile targets in an
unknown area with possible obstacles. The proposed algorithm
divides the search area into grids and each grid is associated with
a gray scale indicating the efficiency of searching targets in this
grid. This gray-scale map guides the robots in target search. In
real applications, robots are normally powered by batteries and
are prone to fail, requiring efficient coordination of the robots to
maximize search efficiency. A Voronoi mask is further introduced
to coordinate swarm robots to search different portions of the
area. This mask divides the space based on the robots’ current
positions, assigning each robot a specific region that is closer to
it than to others, leading to efficient and coordinated operation.
We mathematically derive an upper-bound on the total time for
robots to traverse all the grids in the search area. We then show
by simulations that the proposed motion coordination algorithm
outperforms the state-of-the-art and coordination of robots is
critical to improving success rates and minimizing search latency.
The proposed algorithm has not yet been tested in a robot testbed
which is our future work.
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Fig. 1. Target search using swarm robots.

Index Terms—Swarm robots, target search, motion control,
motion coordination, mobility control.

I. INTRODUCTION

ROM small toasters to huge industrial machines, robots

are already an indispensable part of our daily lives. With
robotics technologies advancing rapidly, a group of robots
are able to communicate with one another and form a robot
swarm to realize new applications. Examples of swarm robots
include various types of drones, unmanned vehicles (e.g.,
Google driverless cars), UAVs (unmanned aerial vehicles),
AUVs/UUVs (autonomous underwater vehicle/unmanned un-
derwater vehicles), and unmanned ships. These robots are
usually battery powered. Each robot is equipped with at
least one wireless transmitter to exchange information with
its neighbors within the communication range. The robots
can carry sensors such as accelerometers, infrared detectors,
microphones and cameras. With the capabilities of moving,
sensing and communicating, swarm robots have been used in
many applications including surveillance, search and rescue,
payload delivery and military missions.

Target search, in which a collection of robots are sent to
search for targets in a specific area (see Fig. 1), is an important
application of swarm robots. Swarm robots can be effectively
utilized for target search in a variety of practical applications,
including the following three examples.

o In robot-assisted exploration (e.g., mine exploration),
sending human miners into drill holes of a mine is
dangerous because there is a risk of collapses. Mobile
mining robots, equipped with different sensors, are more
suitable to explore mining holes than human miners.
These robots can go into an underground tunnel and apply
the motion coordination algorithm for mine exploration.
In this way, the human miners can be safely above



ground and collaborate with the mining robots to get
useful information without going into dangerous areas.
The targets are normally static in this application.

o In a disaster rescue (e.g., earthquake and tsunami), swarm
robots can be sent to places that are too dangerous
for human workers. Swarm robots can coordinate with
one another to collect data and search for targets in a
wide area [1]-[3]. In this application, the targets (e.g.,
survivors) could be either static or mobile.

« In security and military missions [4], swarm robots (e.g.,
UAVs/UUVs) can be programmed to patrol a specific area
for intruders, or follow the order to search for enemies
(e.g., submarines) in the area [5], [6]. In this application,
the targets (e.g., intruders and enemy submarines) are
normally mobile.

Target search is a challenging problem due to the following
reasons. 1) Search area is wide while the lifetime of robots
is limited as robots are normally powered by batteries. It
requires swarm robots to cooperate for an effective search;
2) Targets can be moving. A target could move into an area
that is just searched before; and 3) Robots are prone to fail.
During the search, a robot could fail due to power depletion,
hardware failure, or malicious attack. Existing works have
been devoted to target search. Some of these works consider
static targets only such as [7]-[13], while some others consider
mobile targets [14]-[19]. A review of these works is given in
Section II.

In this paper, we developed a motion coordination algorithm
for swarm robots to search for targets in an unknown area.
We consider both static targets (e.g., mine) and mobile targets
(e.g., intruders). With the proposed algorithm, swarm robots
are able to perform effective target search by coordinating
with one another. The major contributions of this paper can
be summarized as follows.

e We propose novel concepts of gray-scale map and
Voronoi mask. The gray-scale map divides the search
area into grids and a gray scale of each grid demon-
strates search efficiency of the grid. The Voronoi mask is
designed to coordinate robots to search in different areas
so as to maximize search efficiency.

o Based on the gray-scale map and the Voronoi mask, we
propose a motion coordination algorithm for searching
targets in an unknown area. The proposed algorithm
enables each robot to identify an efficient search path
and it is applicable to both static and mobile targets.

o We perform theoretical analysis on the proposed algo-
rithm. By theoretical analysis, our motion coordination
algorithm is validated to ensure that all static targets are
guaranteed to be found if coefficient of the Voronoi mask
is equal to zero and the side length of the grid is equal to
the length of the search path. We derive an upper-bound
on the total time for robots to traverse all the grids in the
search area.

e« We conduct extensive simulations to evaluate perfor-
mance of the proposed motion coordination algorithm.
Simulation results show that our algorithm outperforms
the state-of-the-art and achieves a success rate of over

90% in finding all mobile targets, and the communication
among robots is crucial to improve the search efficiency
in terms of the search latency and the success rate.

The rest of the paper is organized as follows. Related works
are reviewed in Section 2. System model is described in
Section 3. We present a motion coordination algorithm in
Section 4 and theoretical analysis in Section 5. Simulation
results are presented in Section 6. We conclude our work in
Section 7.

II. RELATED WORKS

The relevant literature on target search can mainly be
divided into two categories: searching for static targets and
searching for mobile targets.

A. Searching for Static Targets

Several studies have examined searches for a single static
target. Dimidov et al. [8] analyzed the efficiency of two
classes of random walk search strategies, namely the correlated
random walk and Lévy walk, for discovering a static target
in either a bounded or open space. The search strategies were
tested through simulations that used up to 30 real robots (Kilo-
bots). During the experiment, robots communicate to share
information about the discovery of target. Sakthivelmurugan
et al. [9] introduced a number of searching strategies for the
detection and retrieval of a static target, including the straight-
line, parallel-line, divider, expanding square, and parallel
sweep approaches. Experiments were conducted with up to
four robots in an environment with known boundaries and they
showed that a parallel sweep with the divider approach was the
most efficient strategy. Wang et al. [10] formulated a partially
observable Markov decision process (POMDP) model for the
indoor environment object search problem. A belief state in
the POMDP can be a room or an unknown place. They use
Gaussian mixture model (GMM) to model the distribution of
belief states. To reduce the number of belief states, they use a
graph structure called belief road map to represent the explored
area. Czyzowicz et al. [28] proposed deterministic algorithms
for robots to coordinate and search for a target in an area.
Their algorithms are able to handle accidental and malicious
faults of the robots, and shown to be asymptotically optimal.
However, the deterministic nature of their algorithms makes
them inapplicable to search for an intelligent target which tries
to avoid detection.

Searching for multiple static targets was also studied. Tang
et al. [11] proposed a particle swarm optimization (PSO)
algorithm to search for multiple targets. The algorithm uses
a constriction-factors-based grouping strategy to group robots
into sub-groups. They assumed that each target emits a signal
that can be detected by robots, e.g., light and temperature, and
the signal strength decreases as the distance from the target
increases. Wi-Fi is used for communication between robots.
Rango et al. [12] considered the mine detection problem
using a modified ant colony algorithm. Given multiple mines
that were randomly distributed in an unexplored area, the
problem involved moving robots to explore the area and
detect all of the mines using the minimum amount of time.



TABLE I
DIFFERENCES BETWEEN THE PROPOSED WORK AND EXISTING SOLUTIONS IN TARGET SEARCH

Consider . Consider message -
single / Statlf: ! exchange for Requlre 1nf0rrpa— Consider .
. mobile Lo tion of motion Other requirements

multiple target(s) coordination of model of target(s) obstacles

targets robots
This work Multiple Mobile Yes No Yes No
[20] Multiple Mobile Yes No No No
[21] Multiple Static Yes No No No
[22] Multiple Static Yes No Yes No
(14] Multiple Mobile Yes No Yes There is a requirement on the mini-

mum number of robots
[16] Single Mobile Yes No Yes Robots must be able to release pheromone
[17] Single Mobile Yes Yes Yes ggbots“knl o::rls:frch maps, e.g., the posi-
. . The original target position is known ap-
[18] Single Mobile No Yes Yes R .
proximately in advance

[19] Single Mobile Yes Yes No Robots know search maps
[23] Single Mobile No No Yes Robots know search maps
[24] Single Static Yes No No No
[25] Multiple Static Yes No No No
[26] Multiple Mobile Yes No No No
[27] Multiple Mobile Yes No No No

During the search process, the robots lay repelling anti-
pheromones on the explored area. When choosing their next
movements, the robots perceive pheromone information from
their surroundings and travel to undetected regions with the
least pheromone intensity. Once one or more robots discover
a mine, attractive pheromones are deposited to recruit other
robots. After the required number of robots are attracted to
the mine location, they work cooperatively to disarm the
mine. Zhang et al. [13] presented a prior knowledge based
approach to search dynamic objects in a home environment.
They consider that the targets are dynamic, e.g., a laptop
may change its location often, but they are static during the
search. The target location and relationship between targets are
used as a prior knowledge to guide robots for searching. Al
Amin et al. [25] proposed a Gravitational-Search-Algorithm-
based swarm coordination model for multiple UAVs detect-
ing unknown static targets in unknown environments. Their
approach models UAVs as masses in a gravitational field,
where gravitational forces guide movement toward potential
target locations, evaluated by fitness functions. Zhao et al. [22]
proposed a distributed model predictive control (DMPC)-based
method for multi-target search in unknown environments. The
algorithm incorporates a hierarchical grid map and switching
prediction mechanisms to plan effective paths under limited
signal coverage and communication ranges. Notably, it in-
cludes an obstacle avoidance mechanism based on a virtual
force model, allowing robots to detect and avoid both static
obstacles and neighboring robots. Furthermore, an obstacle-
following strategy is implemented to navigate around obstacles
when avoidance is difficult, ensuring robust performance in
cluttered environments.

B. Searching for Mobile Targets

The works [14]-[20], [23] focused on finding mobile targets.
Durham et al. [14] studied the pursuit-evasion problem where
multiple robots coordinate to detect evaders in an unknown
environment. They proposed a frontier-based distributed algo-
rithm that can guarantee that moving evaders are detected as

long as there are a sufficient number of robots. Their proposed
algorithm requires robots to maintain complete coverage of
the frontier to avoid recontamination. Coogle et al. [15]
studied the iceberg observation problem, and defined it based
on an existing robotic observation problem known as the
cooperative multi-robot observation of multiple moving targets
(CMOMMT). In this model, robots are generally fixed in lim-
ited positions and are reallocated only occasionally. They pro-
vided a GMM-based probabilistic model for the target sources
to guide robots in reallocation if necessary. Tang et al. [16]
assumed that the target is always signaling, and the robots
sense the distance to the target through the signal strength of
the target. They proposed an implicit-communication-based
algorithm for target search, i.e., information transfer by re-
leasing/reading pheromones. The path planning algorithms of
[17]-[19] are based on the target motion model. Asfora et
al. [17] assumed that the search environment is given in ad-
vance. They proposed three mixed integer linear programming
models to path planning. Mou et al. [18] applied a particle-
based method to estimate the position of the target. A particle
represents a possible position of the target. They proposed an
entropy-based method to generate paths for robots. Acevedo
et al. [19] also used a particle-based method to predict the
target’s position. They divided the search map into multiple
cells, and the probability of the target being in a cell is
determined by counting the number of particles in that cell.
Then the coverage search algorithm is proposed to generate
the search path. Table I summarizes the differences between
the proposed work and current literature on finding targets.
Saadaoui et al. [20] introduced the Local PSO (LoPSO)
algorithm, which leverages the concept of local sub-swarms
of robots to enhance the efficiency of cooperative multirobot
search tasks. The algorithm dynamically forms sub-swarms
based on the target detection status. This approach mitigates
communication and sensing limitations by enabling robots
within the same sub-swarm to exchange information more
effectively. Compared to LoPSO [20], which forms local sub-
swarms to enhance coordination and reduce communication



overhead, Zhao et al. [22] explicitly address obstacle avoidance
by integrating a virtual force model and an obstacle-following
mechanism. While LoPSO emphasizes rapid convergence and
efficient division of labor in open environments, [22] demon-
strates stronger adaptability in complex environments with
unknown static obstacles. Both methods support inter-robot
communication and coordination, but differ significantly in
their assumptions and handling of environmental complexity.
Guo et al. [23] proposed DRL-Searcher, an algorithm based
on distributional reinforcement learning, aimed at solving
the multirobot efficient search problem for a moving target.
DRL-Searcher estimates the probability distribution of tar-
get capture time and adjusts the search strategy according
to different objectives, such as minimizing capture time or
maximizing detection probability, to enhance the efficiency of
multirobot search. Jia et al. [26] proposed an asynchronous
Bayesian updating strategy for multi-AUV dynamic target
search under unstable underwater communication. By leverag-
ing opportunistic optical links for high-capacity data exchange,
AUVs asynchronously update local information maps and
optimize paths via predictive control. Li et al. [27] introduced
a MARL-based persistent coverage framework for random
targets without prior knowledge. Vehicles estimate a global
“knowability map” via distributed max-consensus and adaptive
area partitioning, enabling scalable cooperation with limited
observations.

Recent studies have leveraged Voronoi-based methods for
multi-robot coordination in dynamic environments. Hu et al.
[29] proposed a Voronoi partition approach combined with
deep reinforcement learning (DRL) for autonomous explo-
ration, enabling robots to handle sudden obstacles through
policy learning from human demonstrations. Similarly, Wang
et al. [30] integrated Voronoi graphs with channel-spatial
attention mechanisms (CSAM) in convolutional neural net-
works to optimize UAV coverage paths. While these DRL-
based methods excel in adaptability to complex environ-
ments, they require substantial training data and computa-
tional resources, posing challenges for real-time deployment in
resource-constrained scenarios. In contrast, our Voronoi-based
motion coordination algorithm relies on predefined mathe-
matical models and implicit communication (via gray-scale
maps), eliminating the need for training or prior knowledge of
target dynamics. This offers higher computational efficiency
and predictability in those applications where training data
may not be available in advance.

Although many existing works have addressed multi-robot
search tasks, they often suffer from several limitations. For
instance, some approaches focus on static or known targets
[8]-[13], [18], [22], [25], [28], which limits their applicability
in real-world scenarios involving dynamic targets. Others
require prior knowledge of the targets’ motion models [15],
[17]-[19], [27], which is often unavailable. Certain methods
impose hardware constraints (e.g., pheromone release capabil-
ity [16]) or minimum robot threshold [14]. Moreover, DRL-
based techniques [29], [30] demand substantial computational
resources for training, challenging real-time operation. Criti-
cally, many algorithms do not consider inter-robot communi-
cation or coordination [18], [23], leading to inefficient search

due to redundant exploration. In environments with unknown
obstacles, their adaptability and robustness are also restricted
[19]-[21], [24]-[27].

To overcome the aforementioned limitations, we propose a
search method that integrates gray-scale maps, Voronoi masks,
and inter-robot motion coordination. Specifically:

o A gray-scale map that allows robots to revisit and search
previously explored areas, which is critical for locating
moving targets.

o A Voronoi mask that partitions the search space among
robots, reducing redundant searches and improving over-
all search efficiency.

e Robot motion coordination is achieved through inter-
robot communication, which enables information sharing
about explored areas. This shared knowledge allows the
robots to better plan their search paths, avoid redundant
exploration, and improve overall coverage efficiency.

Compared with previous approaches, the proposed method
features:

e More generalized algorithm (e.g., addressing multiple
moving targets).

o Applicable to harsh environments (e.g., the search area
with unknown obstacles).

o Less demanding on resources (e.g., do not require in-
formation of motion model of targets, and no special
requirements requested by existing approaches).

« Better search efficiency (e.g., simulation results show our
proposed algorithm outperforms the state-of-the-art by
125% in terms of success rate (100% vs. 44.4%)).

III. SYSTEM MODEL

We assume that the search area is a rectangle with arbitrarily
shaped obstacles. This assumption is valid in practice because
we can use the smallest rectangle to cover an irregular search
area. All obstacles are assumed to be unpredictable in our
problem. That is, robots have no prior knowledge of presence
of obstacles and their information such as shapes and loca-
tions. The size of the rectangle is assumed to be a x b. The
main notations used in this section are summarized in Table
II.

There are T targets distributed in the search area and their
positions are unknown. A target may move or be static at any
time. There are N robots, denoted by ry, ra, ..., Ty, in the
target search task. These robots could be UAVs and unmanned
vehicles/ships. We assume that the robots have unique IDs,
numbered from 1 to N. The robots are powered by batteries
and have limited lifetime specified by [;, ¢ = 1,2,--- | N.
Each robot is equipped with a wireless transceiver with a
communication range of R. and is aware of its own position
by a GPS device. Two robots are able to detect each other’s
presence and exchange information if they are within each
other’s communication range. Each robot is equipped with
sensors with a sensing/searching range of R to explore and
identify the targets. A target is said to be found by a robot
as long as the target is within R, of this robot. The robot
is able to move, and its velocity is adjustable in the range of
[Vinin, Vinaz)- Note that V,,;, = Viee if a robot moves with a



TABLE II
SUMMARY OF KEY PARAMETERS AND VARIABLES

N number of robots

T number of targets

L path length

0; path angle of robot r;

R; set of neighboring robots of robot r;

Rc communication range

Rgs sensing range

l; lifetime of robot r;

gi gray-scale map of robot r;

Vi speed of robot 7;

P; position of robot r;

PjT position of target j

axb size of the rectangular search area (number of grids)
gi(7) gray scale value of grid j in robot r;’s map
m;(j) Voronoi mask for grid 5 by robot r;

o mask coefficient in [0, 1] for Voronoi mask
dist(ri,j) | Euclidean distance from r; to center of grid j

constant velocity. Robots may fail due to various reasons such
as energy depletion, hardware errors, or malicious attacks. In
our model, we adopt a decentralized system structure, i.e.,
there is no central coordinator and each robot independently
determines its own operation.

The problem of our concern is to design a motion coordina-
tion algorithm for robots to search for targets. The objectives
are 1) to maximize the number of successfully-found targets
before all robots deplete their energy; and 2) minimize the
average search latency which is critical to search and rescue
applications.

Our model aims to address a general scenario where no prior
knowledge is available about the target distribution. Therefore,
in our model, finding one target does not provide useful
information about the likelihood of discovering other targets
nearby. This modeling choice ensures broad applicability, even
when targets are sparsely or irregularly distributed. In contrast,
if multiple targets are known to be densely clustered within a
search area, inter-robot information sharing can be beneficial
to enable nearby robots to efficiently search for remaining
targets in the area.

IV. MOTION COORDINATION ALGORITHM

Our basic idea is to divide the search area into grids and the
size of each grid is designed to be fully covered by a robot with
the sensing range. This ensures that any target within a grid
can be detected when a robot visits it. Each grid is associated
with a gray scale indicating the efficiency of searching targets
in this grid. The darker the grid (i.e., the higher the gray scale),
the higher the efficiency of searching targets in this grid. All
the grids associated with gray scales form a “gray-scale map”.
Each robot keeps its own gray-scale map that is computed
based on the knowledge of this robot.

Let g;(j) € [0, 1] denote the gray scale of grid j on the gray-
scale map of robot ;, ¢ =1,2,--- ,Nand 5 =1,2,--- ,axb.
Fig. 2 shows an illustrative example of a gray-scale map of
robot 7;. We have ¢;(A) < g;(B) < ¢i(C) < ¢;(D). That is,
D is the grid with the highest efficiency for target search while
A is the grid with the lowest efficiency from the perspective
of robot 7;.

Search Area

: .

Fig. 2. An illustrative example of a erav-scale map.

Search Area @ Swarm robots

Fig. 3. Voronoi diagram of three neighboring robots for search coordination.

A. Gray-Scale Map and Voronoi Mask

In this section, we introduce the basic idea for computing
the gray-scale map of robots. Notice that gray scale of a grid
indicates the efficiency of searching targets in this grid. The
search efficiency is dependent on two factors, namely, visit to
the grid and coordination of neighboring robots.

Firstly, if a grid j has just been searched by robot r; or other
robots, it is not efficient for r; to search targets in this grid
again. Thus, its corresponding gray scale g;(j) should be low.
That is, ¢;(j) depends on the elapsed time after the last visit
of grid j. The longer the time elapsed from the last visit, the
higher the gray scale (i.e., the darker) it should be. There are
two ways to obtain information of the last visit of a grid. One is
from its own record as the robot visited the grid and the other is
from the information shared by neighboring robots. A grid can
be visited by the same robot for several times during the search
task. The time of the last visit of this grid is updated each
time the robot visits this grid. Two robots can also exchange
information of their gray-scale maps if they are within the
communication range R. of each other. Hence, each robot
can update the time of the last visit of a grid either by its own
visit or by the information shared by neighboring robots. The
robot accordingly updates its gray-scale map and computes its
search path which maximizes the search efficiency. However,
notice that after exchanging information among neighboring
robots, the robots may generate similar gray-scale maps and
thus may compute similar search paths which consequently
decrease the search efficiency (Robots are preferred to search
different areas to maximize the search efficiency. The search
efficiency is low if the robots compute similar search paths).
Therefore, coordination of neighboring robots is necessary.

Secondly, the search efficiency also depends on coordination
of robots. The robots are expected to search different portions
of the search area to increase the search efficiency. In our
algorithm, after neighboring robots exchange information, they



are coordinated to partition the search area and give their
search preferences to different partitions. Our basic idea is
to adopt the concept of the Voronoi diagram. An illustrative
example is given in Fig. 3, where three neighboring robots,
numbered from 1-3, meet and exchange information. The three
robots partition the search area into Voronoi cells A, B and
C, where their locations serve as the seed points. Robots 1,
2 and 3 are expected to take care of Voronoi cells A, B and
C, respectively. However, it may not be desirable to limit a
robot to search in its Voronoi cell only. For example, if all
the grids in Voronoi cell B are with light gray scales (i.e.,
low efficiencies of searching targets), robot 2 is preferred to
search Voronoi cells A or C, together with robots 1 or 3,
respectively. To address this problem, we define a Voronoi
mask that is an additional gray scale applied to all the grids
in the corresponding Voronoi cell, such that the robot is
motivated, but not limited, to search the Voronoi cell. In the
above case, robot 2 will add a Voronoi mask to all the grids
in Voronoi cell B. The Voronoi mask of grid j in robot r;’s
gray-scale map can be calculated as follows

dist(r;,j) < dist(ry, j),Vk € N;
otherwise

QY

where « is the mask coefficient in [0, 1], dist(r;, j) is a func-
tion that returns the Euclidean distance between the position
of robot r; and the center of grid j, and N; is the set of
neighboring robots of robot r;. If robot r; does not meet any
other robots, there is no Voronoi mask and m;(j) is zero.
Finally, the efficiency of searching targets in grid j by robot
r; is determined by the time of the latest visit and the Voronoi
mask of grid j imposed by the robot. Hence, the gray scale
of grid j in robot r;’s gray-scale map is calculated as follows

s =min{r1- o
tC’U.T"I”
where ¢, is the current time and ¢;(j) the time of the latest
visit to grid j known by robot ;. Because t;(j) < teyrr and
0 < m;(j) <1, we have 0 < g;(j) < 1. Notice that the
gray-scale maps are updated in a distributed manner and two
robots can share information only if they meet and are within
the communication range R, of each other. It may happen that
a certain grid has just been explored by robot r;, but this grid
is marked as unexplored (i.e., the gray scale is one) in robot

Tj,i#j.

B. Information Exchange

In practice, the robots are moving and a contact period
of two robots is normally short. It may not be feasible to
exchange the whole gray-scale map during the short contact
period because the search area is typically wide (e.g., the
search area of Malaysia Airlines Flight MH370). We assume
that a robot has a limited bandwidth and each robot can
exchange information of up to K, K < a x b, grids with its
neighboring robots. The K grids are the most recently visited
ones, either by the robot itself or by other robots, because more
recent information is more accurate and thus more valuable.
A sample exchanged information is illustrated in Table III.

Search Area * Swarm robot

Fig. 4. Eight candidates of search paths of a robot.

TABLE III
EXCHANGE INFORMATION BETWEEN NEIGHBORING ROBOTS
Grid Coordinates | (5, 268) (547, 217) | (3869, 114)
Time of last visit | 19:23:43 | 18:04:30 12:00:24

In Table III, information of each grid includes two attributes.
One is the grid coordinates and the other is the time of the
latest visit of this grid. For example, (5, 268) denotes the grid
that is located in the 5th row and the 268th column of the
search area, and 19:23:43 is the time of the most recent visit
to the grid with coordinates (5, 268). Notice that there could
be other forms of coordinates and time (e.g., including dates)
which depend on the applications.

Due to the limited bandwidth, a robot cannot send in-
formation of the entire gray-scale map to its neighboring
robots in the message exchange process. Instead, once two
robots meet (i.e., within the communication range of each
other), they exchange information of up to K grids, where
K is a parameter dependent on the available bandwidth and
contact duration of the robots. Upon receiving the exchange
information, a robot updates its gray-scale map by examining
the time of the last visit of those grids in the table. If the
received time is more recent than that of its gray-scale map,
r; updates its g; using equation (2) to obtain a lower gray
scale (i.e., a lighter color).

C. Search Path Planning

With the gray-scale map, a robot can compute a search
path that maximizes search efficiency. Notice that the darker
a grid is (i.e., the longer time that this grid has not been
visited), the higher the efficiency of searching targets in this
grid. Intuitively, targets are more likely located in darker
grids. Therefore, a search path should traverse darker grids
to maximize search efficiency. We assume that the length of
the search path is L. We consider () candidates of search paths
that are originated from the current position of the robot. The
() candidate paths equally divide the plane (i.e., the angle
between two neighboring paths is the same).

Fig. 4 shows an example of eight candidate paths (i.e.,
@@ = 8). It is clear that the candidate path heading to the
northeast direction is better than that heading to the south
direction, because the former passes through more dark and
gray grids. In order to quantitatively evaluate search efficiency
of candidate paths, we define the search efficiency of a



Algorithm 1: Path_planning Algorithm

Algorithm 2: Motion_coordination Algorithm

Input: robot r;’s current position, robot r;’s gray-scale map,
path length L;

Output: the optimal search path Pop;;
// Suppose there are @ candidate paths
that are originated from the current
position of r;.

1 Generate () candidate paths such that the angle between any

two adjacent paths is equal to 27/Q;

2 Let emar = 0;

3forg=11 Q do

4 eq =eff(P;); // compute the search

efficiency of P; based on (3).

5 if e > emaz then
6 €max = €q;

7 Popt - Pq;

8 end

9 end

candidate path P,,q = 1,2,...,Q, computed by robot r; as
follows

ab . .
- Zj:l O(Pq7.7) X gi(])
~ valid length of path P,’

eff(Fy) 3)

where O(P,, j) represents the length of the overlapping part
between candidate path P, and grid j. Intuitively, the search
efficiency of a candidate path is higher if it has more overlap
with darker grids. The valid length of path P is the length of
the path segment within the search area.

Algorithm 1 gives details of the proposed Path_planning
algorithm. The input of the algorithm includes robot 7;’s
current position, robot r;’s gray-scale map, and path length
L. For each candidate path, we calculate the search efficiency
of the path based on equation (3). The algorithm outputs the
path with the highest search efficiency. When robot r; is close
to boundary of the search area, some candidate paths may
exceed the boundary. In this case, the intersection point of the
path and the boundary is treated as the destination, and only
the valid length of the path within the search area is calculated
in equation (3).

Initialize search path

)
Enough residual No
nergy?
Yes

Move along search path and
broadcast HELLO message
]

Encountel
neighboring
robots?

Yes

Notify
headquarter

Update gray-
scale map ‘

‘

Update search path

Move to headquarter

End

Fig. 5. Decision flowchart of the robot’s motion coordination process.

Input: robot r;’s current position, path length L, mask
coefficient o;
1 Initialize a search path P; of L in length;
2 while robot r; has enough residual energy do

// Each robot should reserve enough
energy allowing the robot to return to
the headquarter.
3 Move along P; while broadcasting a HELLO message
periodically;
4 if robot r; moves to a new grid j then
5 | Update gray-scale map g;(j) based on (2);
6 end
7 if robot r; encounters neighboring robots then
8 Exchange information with neighboring robots;
9 Compute the Voronoi mask of grids based on (1);
10 Update gray-scale map g;(j) based on (2);
11 Call Path_planning algorithm to update P;;
12 end
13 if robot r; reaches the boundary of the search area or
the destination of path P; then
14 | Call Path_planning algorithm to update P;;
15 end
16 if robot r; encounters an obstacle then
17 Call Obstacle_avoidance algorithm [31] to bypass
the obstacle;
18 end
19 if robot r; identifies a target then
20 | Notify the headquarter;
21 end
22 end

23 Move to the headquarter for battery charging or replacement;

D. Motion Coordination

The motion coordination algorithm for robot r; is formally
presented in Algorithm 2 and is sketched as follows. A
decision flowchart illustrating the overall process is shown in
Fig. 5. The algorithm is executed at each robot in a distributed
manner. Each robot maintains a gray-scale map and initializes
a search path (e.g., a randomly selected path of length L) when
the algorithm starts. The robot continuously moves along the
search path while checking the following conditions.

o If the residual energy is only enough for the robot
to return to the headquarter, the robot stops searching
and moves to the headquarter for battery charging or
replacement.

« If the robot moves to a new grid, it updates its gray-scale
map according to equation (2).

« If the robot encounters neighboring robots, it exchanges
information with the neighboring robots and computes
the Voronoi mask of the grids according to equation (1).
Then, the robot updates its gray-scale map according to
equation (2) and calls the Path_planning algorithm to
update the search path. The robot moves along this new
search path.

« If the robot reaches the boundary of the search area or the
destination of the search path, it calls the Path_planning
algorithm to update the search path. The robot moves
along this new search path.

o If the robot encounters any obstacles during the move-
ment, it calls the Obstacle_avoidance algorithm [31]



(using either the right-hand rule or the left-hand rule) to
bypass the obstacle. In this method, the robot keeps its
virtual right-hand/left-hand in constant contact with the
boundary of the obstacle and moves until it either returns
to its planned path or reaches the extension of the path
beyond the obstacle (in cases where the goal lies within
the obstacle).

o If the robot identifies a target, the robot notifies the
headquarter (e.g., by moving back or via 5G/satellite
communications) and continues the search.

The above process is repeated until the robot runs out of its
energy.

V. THEORETICAL ANALYSIS

In this section, we analyze theoretical performance of the
proposed algorithm. To simplify analysis, we set the mask
coefficient o to zero and the side length of the grid to L,
where L is the length of the search path. That is, impact of
robot coordination is removed and each robot only determines
its search path based on the time elapsed after the last visit
of grids. Despite this simplification, the theoretical results that
will be derived in this section remain meaningful because the
derived theorems rigorously establish performance bounds for
our proposed algorithm without coordination. The simulation
results (presented in the next section) show that our algorithm
performance improves when coordination between neighbor-
ing robots is enabled. Therefore, these theoretical results are
still valid when robot when robot coordination is enabled.
Because the length of the search path is equal to the side
length of the grid, each robot can move to one of the eight
neighboring grids in each move. We have the following lemma.

Lemma 1. If a grid has been visited K times, all its neigh-
boring grids have been visited at least | K /8| times.

Proof. See the illustrative figure in Fig. 5. After each visit to
grid A, one of A’s eight neighboring grids should be visited.
According to the Motion_coordination algorithm, the grid with
the highest gray scale is selected for search. Thus, if there exist
neighboring grids that have not been visited before (i.e., with
the highest gray scale), one of these grids must be visited after
each visit of grid A. That is, if grid A has been visited eight
times, all its eight neighboring grids must have been visited at
least once. By analogy, we can conclude that every eight visits
on grid A result in at least one visit to all the eight neighbors.
The lemma follows. O

Fig. 6. Eight possible movement directions of the robot at grid A.

We assume that it takes one unit of time to move from a
grid to a neighboring grid. We have the following theorem.

Theorem 1. The proposed Motion_coordination Algorithm
ensures that all static targets are guaranteed to be found. The
total time it takes to visit all grids is no greater than 8™*(a:0),
where a and b are the numbers of grids on the length and width
of the search area, respectively.

Proof. Notice that impact of robot coordination is removed
(i.e., a=0). If the theorem is true for one robot, the theorem
still holds for multiple robots. We consider only one robot in
the search area and assume that the robot starts with grid A.
Notice that robots may visit a same grid multiple times during
the search process. According to Lemma 1, it takes at most 8t
for the robot to visit all the grids that are ¢ hops away from grid
A. Notice that a and b are the numbers of grids on the length
and width of the search area, respectively. It takes at most
gmax(a.b) yntil all the grids in the search area have been visited.
Because targets are static, the proposed Motion_coordination
Algorithm ensures that all static targets are guaranteed to be
found. O

Theorem 1 gives a loose upper-bound on the total time it
takes to find all static targets. We derive a tighter upper-bound
in the following.

To facilitate the analysis, we assume that there is only one
robot in the search area. We number the grids according to
the order in which they are first visited by the robot, where
grid K represents the K-th grid visited by the robot for the
first time. We suppose that the robot visits grid A first and
then visits grid K. That is, we have K > A. We define the
following variables.

o tx: The time when the robot first visited grid K.

. til’ x: The time when the robot visited grid A for the i-th
time during time interval [tx,tx11]. Notice that grid A
is visited by the robot before grid K.

e B, x: The grid from which the robot entered grid A
during its i-th visit to grid A. Obviously, B; x is a
neighboring grid of A.

o Tit,,t5]" A set of grids that the robot visited during time
interval [t1,tx].

00— —0————0—>

131 ta tx t}u( t2A«,K til,K trt1

Fig. 7. Temporal relationships between variables on the timeline.

Fig. 7 illustrates an example of the temporal relationships
between variables on the timeline.

Lemma 2. If the robot visits a grid, say A, m times during
time interval [t ,tiy1], then the robot must have visited at
least one grid bglonging 10 Tty 5] — T[tK’t'iA‘K] during time
interval [ fqu,tf;fk] where 1 < i < m.
Proof. We prove this by contradiction: assume that all grids
visited by the robot belong to T[tK,t:Lq . during the time in-
terval | iA7 K tg"}l(] For simplicity, unless otherwise specified,
the time intervals discussed in the following analysis will refer
to [t s th k-

First, we examine the conditions under which the robot
would revisit grid A. According to the Motion_coordination



algorithm, at time ¢p, , ,, all neighbors of grid B;;1 x must
have been visited by the robot (note that the robot has already
visited grid A at time tp, ,.). If any neighbor of grid B; 1 i
has not been visited by time tp,,, ., it must have a higher
gray scale than grid A. In this case, the robot would move from
grid B; 1, i to the neighbor with the highest gray scale, rather
than returning to grid A. This contradicts the assumption that
the robot moves from grid B;;1 x back to grid A.

Therefore, for any grid A that has been visited after time
tx, if the robot visits this grid again, it must have a neighbor
such that all of its neighbors, except grid A, have been visited
during the robot’s two visits to grid A. Thus, if all grids visited
by the robot belong to T}, Kot ) then all neighbors of any
grid in T[tK,t:Lq.K] must also belong to T[tK,t;’K]

To illustrate this conclusion, consider the following exam-
ple. Suppose the robot moves from grid A to its neighbor,
grid C'. Then, all of grid A’s neighbors must have been visited
during the robot’s two visits to grid C'. This process continues
until the robot returns to grid A. In this example, the robot’s
visits to grid A and its neighbors lead to a visit to grid C, and
the robot’s visits to grid C and its neighbors lead to a visit to
grid A. Intuitively, the robot must visit grid C' before visiting
its neighbor, grid A, and similarly, it must visit grid A before
revisiting grid C.

Obviously, there are some grids in T[tK,ti;,K] whose neigh-
bors are not in Ty, 4 e Therefore, the robot must visit at
least one grid belonging to Tf, 1, — T}, Kot ] during time
interval [tx,tx41]- O

Lemma 3. We suppose that grid j is the last grid that the
robot visits before grid K + 1. We have grid j € [1, K| and
grid j is visited by the robot exactly once during time interval
[t tr41)-

Proof. According to the grid numbering rule, grid K +1 is the
next grid of K that is visited by the robot for the first time.
All the grids visited by the robot during time interval [tg,
t i +1] should have been visited before during time interval [¢;,
tx]. Thus, we have grid j € [1, K]. Notice that grid K + 1
is an unvisited neighbor of grid j before time ¢y ;. That
is, grid j has at least one unvisited neighbor. According to
the Motion_coordination algorithm, if the robot visits grid j
during time interval [tx, tx 1], then it must visit one of its
unvisited neighbors which is grid K + 1. Therefore, grid j
is visited by the robot exactly once during time interval [ty
t K+1]- O

Theorem 2. The total time taken by the proposed Mo-
tion_coordination Algorithm to traverse all the grids is no
2(ab)®—3(ab)%+ab
greater than =——¢———, where a and b are the numbers
of grids on the length and width of the search area, respec-

tively.

Proof. We consider the special case where there is only
one robot in the search area. Notice that impact of robot
coordination is removed (i.e., « = 0). If the theorem is true
for one robot, the theorem still holds for multiple robots.

We first analyze the upper bound of time interval [t 5, tx 1]
According to Lemma 2, during this interval, between two visits

to the same grid, at least one grid is visited for the first time
after ¢ty . Furthermore, since the robot has visited at most K
different grids during time interval [tx,tx1), if the time
interval between two visits to the same grid exceeds K, then
there must exist at least one other grid that the robot visits at
least twice in between. Therefore, starting from any time point
during time interval [tf, 1], until the robot visits a grid for
the first time after ¢, the total number of grids visited by the
robot will not exceed K.

According to Lemma 3, grid K + 1 must be a neighbor of
some grid 4, where ¢ € {1,2,..., K}. Thus, we can conclude
that the upper bound of time interval [tx,t5 1] is K2.

Therefore, the time required for the robot to visit all grids
does not exceed:

2 _ 2(ab)® —3(ab)* + ab

12422+ 4 (ab—1) :

“4)

O

Theorem 1 and Theorem 2 guarantee the theoretical perfor-
mance of the proposed Motion_coordination Algorithm when
the mask coefficient « is zero (i.e., there is no coordination
of the robots) and the targets are static. The performance of
the proposed algorithm in cases with a > 0 (i.e., robot coor-
dination is incorporated) and mobile targets will be validated
through simulations in the next section.

Note that the theoretical guarantees provided in Theorems 1
and 2 are derived under several idealized assumptions, such as
static targets, the absence of robot coordination (i.e., a = 0),
and uniform grid-based environments without obstacles. These
assumptions were made to facilitate tractable analysis and
derive provable bounds. However, in real-world applications,
robot coordination, dynamic target behaviors, irregular terrain,
and obstacle presence may affect the actual performance of
the algorithm. Relaxing these assumptions to obtain theoretical
guarantees under more realistic conditions remains a challeng-
ing open problem. Our current simulations (in Section VI) aim
to bridge this gap by empirically validating the effectiveness of
the algorithm in complex, dynamic environments with o > 0
and moving targets.

We now estimate the running time of the
Motion_coordination algorithm. This algorithm repeatedly
invokes the Path_planning procedure (Algorithm 1) under
several conditions, such as when a robot reaches the end
of its current path, encounters nearby robots, or reaches the
boundary of the search area. Let H denote the total number
of such replanning events during execution. In the absence of
interactions, the frequency of path replanning can be estimated
based on a robot’s energy budget [;, speed V;, and the path
length L. Specifically, a robot would replan approximately
H = [;V;/L times. Each time Path_planning is called, it
generates () candidate paths of length L, with evenly spaced
directions. For each candidate path P,, a search efficiency
score e, is estimated using a Monte Carlo method. This
process involves examining the grid cells that intersect with
the path. Since the grid resolution is determined by the sensor
range Rg, the number of intersecting grid cells is at least
L/Rg. As each cell can be processed in constant time (i.e.,
for lookup, distance computation, and score accumulation),
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Fig. 8. Trajectories of different algorithms in a search area of SkmxS5km without obstacles. There are four robots and one static target which is randomly
deployed. Search duration is 50 minutes. The probability of robot failure is 0.2. The probability of successful target detection is 0.8. The probability of

successful communication is 0.5. Our algorithm successfully finds the target.

TABLE IV
SIMULATION PARAMETER SETTINGS

Range of search area 10km x 10km
Number of robots 10
Number of targets 5

Robot speed 400m/min
Target’s maximum speed 25m/min
Detection range 200m
Communication range 500m
Robot lifetime 120min
Number of candidate paths 8

Length of a time slot 10s

Mask coefficient 0.1
Broadcast packet size 1000bytes
Probability of robot failure 0.2
Probability of successful target detection | 0.8
Probability of successful communication | 0.5

the computation for each candidate path is O(L/Rg). Given
that there are () candidate paths per replanning event and H
such events over the execution, the total time spent on path
planning is approximately O(H - @ - L/Rg). Other operations
within Motion_coordination, such as information exchange,
grayscale updates, and Voronoi mask computation, are either
constant-time or linear with respect to the robot’s local state
and thus do not dominate the overall running time.

VI. SIMULATION

A. Evaluation Metrics and Parameter Settings

We conduct simulations on MATLAB 2018b in a Win-
dows 10 desktop. We compare our proposed method with
PSO [21], LoPSO [20], and random search. All three methods
are population-based search algorithms, which makes them

suitable for comparison under the same problem setting.
PSO and LoPSO are recently proposed algorithms that have
demonstrated effectiveness in previous studies, making them
relevant choices for benchmarking. These algorithms share
similar features with our proposed method, such as population-
based search strategies, inter-robot communication within a
limited communication range for information sharing, and the
use of a detection range for target detection. These similarities
ensure a fair and meaningful comparison. Random search is
included as a baseline method to emphasize the advantages of
swarm intelligence approaches over unguided exploration.

In summary, we compare five algorithms, i.e., our algorithm
(i.e., Motion_coordination in Algorithm 2), our algorithm
without communication (i.e., without the Voronoi mask and
information exchange with neighboring robots), the PSO [21],
the LoPSO [20] and the random search. The following criteria
are adopted to evaluate performance of the algorithms.

e Success rate: The ratio of the number of targets success-
fully detected to the total number of targets during the
search mission.

e Average search time: The mean time required from the

start of the search mission to the end of the search

mission. There are two cases when the search mission
ends: one is that all targets are detected, and the other is
that all robots run out of energy.

First success time: The time required to find the first

target from the start of the search mission (e.g., we hope

to find the people to be rescued as soon as possible.).

The search area is assumed to be a 10km x 10km plane.
We assume that all the robots start search from the bottom
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Fig. 9. Trajectories of different algorithms in a search area of SkmxSkm with an obstacle. There are four robots and one static target which is randomly
deployed. Search duration is 50 minutes. The probability of robot failure is 0.2. The probability of successful target detection is 0.8. The probability of

successful communication is 0.5. Our algorithm successfully finds the target.

left position. For each robot, we set the communication range
to be 500m, as specified in [32], and the detection/sensing
range to be 200m based on [31]. The robot lifetime is set to
120min [33]. The robot speed is set to 400m/min [34]. The
probability of robot failure is set to 0.2, as specified in [35].
The probability of successful detection when a target is within
the sensing range is set to 0.8, following [24]. The probability
of successful communication between neighboring robots is
set to 0.5, based on [36]. In our simulation framework, time
is discretized into time slots, and each time slot represents
10 seconds of simulated time. All parameters are listed in
Table IV.

Terrain variations can impact algorithm performance. Vary-
ing terrain includes different topographic features and varia-
tions in landforms. Such topographic variations may include
mountains, hills, plains, deserts, swamps and many other
terrain types, each with its own unique characteristics and
challenges.

o For robotic vehicles (e.g., self-driving cars), varying
terrain might greatly affect their moving speeds, com-
munication/sensing ranges, and other operational param-
eters. Given the complexity of varying terrain for robot
operation, robot testbeds are preferred over simulation
experiments to test the algorithms, which will be our
future work.

« For flying robots (e.g., UAVs and drones), varying terrain
has limited impact because these flying robots operate in
the air. Our current simulation is mainly for this case.

Notice that the robots will move to the headquarter for
battery charging or replacement after they deplete their energy

reserves in our algorithm. In the simulation, the robots that run
out of batteries are removed to eliminate the impact of energy
reserves (i.e., no battery charging or battery replacement),
so that we can accurately evaluate performance of the five
algorithms.

To evaluate algorithm performance under different condi-

tions, we consider the following three scenarios:

e Scenario I: Static targets, such as stationary objects or
injured people in need of rescue.

e Scenario 2: Low-speed moving targets, such as people
drifting with water currents in a water environment.
Referring to the speed of water current, we set the
maximum speed of the targets to 25m/min.

e Scenario 3: High-speed moving targets, such as intruders
in battlefields. Referring to typical human running speed,
the maximum target speed is set to 200m/min.

B. Comparison of Search Trajectories in the Search Area
Without Obstacles

Fig. 8 illustrates typical search trajectories of robots in the
five algorithms when there is no obstacle in the search area.
To effectively display the search trajectories, we place 4 robots
in a search area of Skmx5km and set a search duration to 50
minutes.

The figure demonstrates that the overall coverage of the
robots in different algorithms are ranked as follows: our
algorithm > our algorithm without communication > the
LoPSO > the PSO > the random search. We observe a
similar ranking of the five algorithms’ performance in the later
experiments such as the success rate and the first success time.
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Fig. 10. Varying number of robots under static, low-speed moving, and high-speed moving target conditions, in a search area of 10kmx10km without
obstacles. There are five targets which are randomly deployed. Search duration is 120 minutes. The probability of robot failure is 0.2. The probability of
successful target detection is 0.8. The probability of successful communication is 0.5.

Search trajectories of our algorithm is shown in Fig. 8(a)
where the four robots almost visit the entire search area. Com-
paring Fig. 8(a) and Fig. 8(b), we can see that communication
between the robots is effective to enhance the search efficiency.
For instance, Robot 1 and Robot 3 searched the upper left part
of the search area, while Robot 2 and Robot 4 searched the
lower right part in Fig. 8(a). The search trajectories of the
four robots are sufficiently separated to enhance the search
efficiency in our algorithm. In contrast, the search trajectories
of the four robots mixed together without communication
of the robots. Fig. 8(b) demonstrates there are still some
unsearched areas in the middle and the bottom right corner
of the search area.

Fig. 8(c) shows that search trajectories of the robots in
the LoPSO roughly cover half of the search area. This is
because the LoPSO relies on signals emitted by the targets
to estimate their approximate locations. When the robots are
unable to capture the targets’ signals, the algorithm cannot
efficiently plan the robots’ search paths. Fig. 8(d) and Fig.
8(e) demonstrate that the robots using the PSO and the random

search only explored a small portion of the search area.

C. Comparison of Search Trajectories in the Search Area With
Obstacles

Fig. 9 illustrates typical search trajectories of robots in the
five algorithms when there is an obstacle in the search area.
The obstacle is a square with a side length of 1 km, centered
at the coordinates (1.5km, 1.5km). Similar to that in Section
5.2, we place 4 robots in a search area of Skmx5km and set
a search duration to 50 minutes.

Fig. 9(a) demonstrates that our algorithm well tackles the
obstacle problem and the search trajectories of the robots are
evenly separated in the search area. Our algorithm without
communication also enables the robots to cover most of the
search area in Fig. 9(b). Fig. 9(c)-(d) illustrate that the robots
using the LoPSO, the PSO and the random search are unable
to bypass the obstacle because they were not designed for this
purpose.

For the sake of fairness, we remove obstacles in all the other
experiments in this work.
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Varying number of targets under static, low-speed moving, and high-speed moving target conditions, in a search area of 10kmx10km without

obstacles. There are ten robots. Targets are randomly deployed. Search duration is 120 minutes. The probability of robot failure is 0.2. The probability of
successful target detection is 0.8. The probability of successful communication is 0.5.

D. Impact of Number of Robots

Fig. 10 illustrates the impact of varying the number of robots
from 5 to 30 on the success rate, the first success time, and
the average search time across three scenarios: static targets,
low-speed moving targets, and high-speed moving targets.
Fig. 10(a), (d) and (g) show that the success rates of the five
algorithms improve as the number of robots increases. Notably,
both versions of our algorithm achieve almost 100% success
rates (i.e., all targets are found) when the number of robots is
greater than 20. Performance of the LoPSO is ranked in the
middle of the five algorithms. The PSO and the random search
give a low success rate at around 7% .

Fig. 10(b) (e) and (h) reveal that the first success time
decreases for all the algorithms as the number of robots
increases. Both versions of our algorithm significantly outper-
form the others. The results also indicate very close perfor-
mance of our algorithm and our algorithm without communi-
cation. This is because most of the search area is unexplored
at the beginning of the search when communication of the

robots offers limited benefit.

Fig. 10(c) (f) and (i) show that our algorithm consistently
outperforms the others in terms of average search time. As the
number of robots increases, the average search time for both
versions of our algorithm decreases, while the LoPSO, the
PSO and the random search’s average search time stabilizes
at 120 minutes. This is because these three algorithms are
unable to find all the targets and all robots eventually deplete
their energy.

E. Impact of Number of Targets

Fig. 11 illustrates the impact of varying the number of tar-
gets from 2 to 10 on the success rate, the first success time, and
the average search time across three scenarios: static targets,
low-speed moving targets, and high-speed moving targets.
Since the experimental trends across the three scenarios are
similar, we take the static target case (i.e., subfigures (a)-(c))
as a representative example for discussion. Fig. 11(a) shows
that the success rates of the five algorithms remain stable as
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Fig. 12. Varying speed of robots under static, low-speed moving, and high-speed moving target conditions, in a search area of 10km x 10km without obstacles.
There are ten robots and five targets which are randomly deployed. Search duration is 120 minutes. The probability of robot failure is 0.2. The probability of
successful target detection is 0.8. The probability of successful communication is 0.5.

the number of targets increases. Specifically, the success rate is
kept at 0.82 for our algorithm, 0.70 for our algorithm without
communication, 0.30 for the LoPSO, and 0.06 for both the
PSO and the random search. When the number of targets
increases, it becomes easier for robots to encounter targets, but
meanwhile it becomes harder to find all the targets. Thus, the
success rate remains almost unchanged with these two factors
canceling each other out.

Fig. 11(b) shows that the first success time decreases as the
number of targets increases. Both versions of our algorithm
achieve significantly shorter first success times than the others.
For example, with two targets, our algorithm achieves a first
success time of 31 minutes, which decreases to 10 minutes
with ten targets. The LoPSO (ranked third in the figure),
however, starts at 85 minutes and reduces to 23 minutes as
the number of targets increases to ten.

Fig. 11(c) demonstrates that our algorithm has the best
performance among all the five algorithms. The average search
time of our algorithm increases from 78.6 minutes with

two targets to 115.5 minutes with ten targets. In contrast,
the LoPSO, the PSO, and the random search all reach the
maximum search time limit of 120 minutes because the search
mission ends with energy depletion of the robots before all the
targets are found.

F. Impact of Robot Speed

In Fig. 12, we vary the speed of robots from 100m/min
to 500m/min across three scenarios: static targets, low-speed
moving targets, and high-speed moving targets. Since the
experimental trends across the three scenarios are similar,
we take the static target case (i.e., subfigures (a)-(c)) as a
representative example for discussion. It is observed that as
the speed of robots increases, the performance of all five
algorithms improves, i.e., with larger success rates, lower first
success time and average search time. It is evident that a higher
speed of the robots facilitates search of the targets. Once again,
our algorithm outperforms all the other algorithms across all
metrics. For instance, with the highest speed (500m/min) in
Fig. 12(a), our algorithm achieves a success rate of 0.89,
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Fig. 13. Varying communication range under static, low-speed moving, and high-speed moving target conditions, in a search area of 10kmx10km without

obstacles. There are ten robots and five targets which are randomly deployed.

Search duration is 120 minutes. The probability of robot failure is 0.2. The

probability of successful target detection is 0.8. The probability of successful communication is 0.5.

compared to 0.81 and 0.39 for our algorithm without com-
munication and the LoPSO, respectively.

G. Impact of Communication Range

Robotic networks is a type of dynamic networks where
connectivity of robots changes over time due to movement
of the robots. In our algorithm, if a robot encounters another
robot during the movement, they build a tentative connection
followed by message exchange. Once the two robots move
apart and exceed the communication range, their connection
link is broken. Therefore, the impact of intermittent connec-
tivity has been implemented and tested in our study.

Notice that the LoPSO and the PSO both considered
communications of robots in their approaches. We compare
our algorithm with the LoPSO and the PSO by varying the
communication range of robots from Om to 1000m in Fig. 13.
Since the experimental results across the three scenarios of
target movement are similar, we take the static target case (i.e.,
subfigures (a)-(c)) as a representative example for discussion.

The figure demonstrates that our algorithm outperforms the
others across all performance metrics. As the communication
range increases, it facilitates connecting neighboring robots
and consequent information exchange among those robots,
which enables more effective planning of their search paths.
In Fig. 13(b), with the increase of the communication range,
the first success time of our algorithm and the LoPSO both
decrease while that of the PSO increases. This is because,
in the PSO, when a robot detects a target (i.e., a source in
[21]), it shares this information with nearby robots who will
move to the shared position to locate the target. As a result,
the robots converge into clusters which prevents them from
exploring other areas for new targets.

H. Impact of Search Area Scale

Fig. 14 illustrates the impact of search area scale by varying
the number of robots from 5 to 30 in a large-scale search area
of 100kmx 100km. To ensure the robots can cover the entire
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search area, their lifetime was increased to 200 hours (100x), rate with 20 robots. For high-speed targets (Fig. 14(g)), 25

while other settings remained unchanged.

As shown in Fig. 14(a) and Fig. 14(d), in the static and low-
speed scenarios, our algorithm achieved nearly 100% success

robots were required to reach a similar level due to increased
detection difficulty. Across all scenarios, Fig. 14 demonstrates
that our algorithm consistently outperformed our algorithm
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without communication, which in turn outperformed LoPSO,
followed by random reach and PSO. In terms of average search
time (Fig. 14(c), (f), and (i)), our method showed a clear
advantage over all baselines. Notably, unlike earlier results,
Fig. 14(a), (b), (d), (e), (g), and (h) show that random search
outperformed PSO in success rate and first success time. This
is because PSO is prone to premature convergence, limiting
early coverage.

L. Impact of Heterogeneous Robots

Fig. 15 illustrates the impact of heterogeneous robots under
three scenarios (static, low-speed, and high-speed targets),
where each robot’s energy reserve was randomly set between
50% and 100%. Other experimental settings remained un-
changed. The figure presents results for success rate, average
search time, and first success time.

Across all scenarios, our algorithm consistently outper-
formed our algorithm without communication, followed by
LoPSO, PSO and random search. Particularly in terms of
success rate and average search time (as shown in Fig. 15(a)
and Fig. 15(c)), our algorithm demonstrated a significant
advantage. As expected, the success rate and average search
time decreased with increasing target speed, while the first
success time increased.

J. Communication Overhead

In Fig. 16, the communication overhead of the proposed
algorithm is evaluated by measuring the total number of
messages exchanged among robots during the search process.
The number of robots is increased from 5 to 30. As the team
size grows, the communication overhead rises from 248 to
18226, showing a clear upward trend. This increase is mainly
due to the decentralized coordination mechanism, where more
robots lead to more frequent information exchange. Despite
the growth, the overhead remains within a reasonable range
and does not compromise the scalability of the system.

VII. CONCLUSION

In this paper, we developed a motion coordination algorithm
that enables swarm robots to search for targets in an unknown
area with obstacles. By theoretical analysis, our motion co-
ordination algorithm was validated to ensure that all static

targets are guaranteed to be found if the mask coefficient
«a is zero. We derived an upper-bound on the total time
for the robots to traverse all the grids in the search area.
The performance of our algorithm was further validated via
extensive simulations in general cases that « is greater than
zero and the targets are mobile. Simulation results showed
that our algorithm outperformed the state-of-the-art, achieving
a success rate of over 90% in finding all mobile targets.
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