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Abstract—Information freshness, characterized by age of in-
formation (AoI), is important for sensor applications involving
timely status updates. In many cases, the wireless signals from
one sensor can be received by multiple access points (APs). This
paper investigates the average AoI for cooperative APs, in which
they can share information through a wired backbone network.
We first study a basic backbone-assisted COoperative AP (Co-
AP) system where APs share only decoded packets. Experimental
results on software-defined radios (SDR) indicate that Co-AP
significantly improves the average AoI performance over a single-
AP system. Next, we investigate an improved Co-AP system,
called Soft-Co-AP. In addition to sharing decoded packets, Soft-
Co-AP shares and collects soft information of packets that the
APs fail to decode for further joint decoding. A critical issue in
Soft-Co-AP is determining the number of quantization bits that
represent the soft information (each soft bit) shared over the
backbone. While more quantization bits per soft bit improves
the joint decoding performance, it leads to higher backbone
delay. We experimentally study the average AoI of Soft-Co-AP
by evaluating the tradeoff between the backbone delay and the
number of quantization bits. SDR experiments show that when
the number of sensors is large, Soft-Co-AP further reduces the
average AoI by 12% compared with Co-AP. Interestingly, good
average AoI performance is usually achieved when the number
of quantization bits per soft bit is neither too large nor too small.

Index Terms—Age of information (AoI), backbone, information
freshness, soft bits.

I. INTRODUCTION

The Internet of Things (IoT) is envisioned to be a funda-
mental enabler for future wireless communication networks
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by interconnecting the physical world into computer networks
[1]. In recent years, the explosive growth of IoT devices with
sensing, communication, and data analytics capabilities has
brought new applications requiring timely status updates [2]–
[5]. For example, in future smart cities shown in Fig. 1(a),
a large number of sensors distributed on the street sample
and send measurements of physical characteristics, such as
temperature, pollution index, and traffic flow, to access points
(AP) installed on the lamp posts. In such a smart city scenario,
the freshness of sensed data is of paramount importance.
For example, in future vehicle-to-everything (V2X) networks,
fresh traffic flow monitoring information is critical to enhance
mutual awareness of the surroundings and to reduce the risk
of road accidents [6].

Age of information (AoI), a fundamental metric to quantify
information freshness, was first proposed in [7]. It measures
the time elapsed since the generation time of the latest status
update received at the receiver [8]. More specifically, if at
time t, the latest status update received at the receiver was
an update packet generated at time t − τ at the transmitter
(say, a sensor), then the instantaneous AoI of the sensor is
τ . Since its introduction in [7], AoI has attracted considerable
research interest, and the average AoI is the most commonly
used metric for measuring information freshness, i.e., the time
average of instantaneous AoI [2], [8]. Prior works revealed
that since AoI captures both the generation time of an update
packet and its delay through the network, optimizing the aver-
age AoI is usually different from optimizing packet delay [8].
In addition, various techniques were investigated to improve
the average AoI, such as channel coding [9], [10], advanced
multiple access schemes [11]–[13] (see Section II for more
details).

In Fig. 1(a), due to the dense deployment of APs and
sensors, multiple APs can receive packets from the same
sensor. As a first step, we focus on two neighboring APs
among many APs for cooperation. To be specific, let us
consider a simplified scenario shown in Fig. 1(b), in which
there are N sensors located in the overlapping coverage area
of two APs, namely AP1 and AP2. This means that both AP1
and AP2 can hear these N sensors. Without loss of generality,
suppose that AP1 and AP2 serve as the primary AP and
the secondary AP, respectively, and the update packets from
sensors are destined for the primary AP. Suppose AP1 fails to
receive an update packet due to wireless impairments (such as
shadowing and fading), but AP2 succeeds. In that case, AP2
can forward the received packet to AP1 through the backbone
network infrastructure interconnecting AP1 and AP2 in smart
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Fig. 1: (a) Status update in smart cities: a large number of
sensors are distributed on the street, and they send measure-
ments to access points (AP) installed on the lamp posts. (b)
A simplified backbone-assisted cooperative AP scenario: there
are N sensors located in the overlapping coverage area of two
APs, namely AP1 and AP2. An Ethernet backbone connects
the two APs, allowing APs to exchange information.

cities. Often the backbone connection between the two APs is
wired. This packet forwarding mechanism over the backbone
network essentially increases the packet reception probability
through spatial diversity: it only requires that at least one of the
APs receive the packet. In other words, a packet that reaches
more than one AP can have a higher chance of being received,
thus potentially improving information freshness.

In this paper, we investigate Ethernet-backbone-assisted
cooperative APs to reduce the average AoI of sensor networks
with timely status update requirements. We first study a
basic backbone-assisted cooperative AP system, referred to
as the Co-AP system, in which only the decoded packets
are forwarded through the Ethernet backbone. We consider
multiple sensors sending update packets in a time division
multiple access (TDMA) manner as a simple implementation.
Thanks to the backbone connection, AP1 can receive sensors’
update packets from AP2 when packets fail to be decoded
at AP1 but are decoded successfully at AP2. We note that
an update packet of a sensor usually reaches AP1 via the
backbone before the next update opportunity of the same
sensor (i.e., the next TDMA slot allocated to this sensor). Sec-
tion III shows that this phenomenon effectively improves the
information freshness. Our experiments on software-defined
radio (SDR) show that compared to the traditional system
with non-cooperative APs (i.e., the single-AP system), Co-
AP reduces the average AoI by around 50% when the number
of sensors is 10 (see Fig. 3 in Section III-C for the details).

In Co-AP, AP2 can help AP1 by forwarding an update
packet only when the packet is successfully decoded. That
is, AP2 does not help if it fails to decode the update packet
either. However, failure to decode the packet does not mean
that there is no information about the packet. Intuitively, AP2
can forward the received raw complex signals to AP1. Then
AP1 tries to decode the packet again jointly using the signals
received at both APs, i.e., by the maximum ratio combining
(MRC) technique [14]. While forwarding raw signal samples
improves the joint decoding performance, it requires AP2 to

forward a large amount of data. This may affect the regular
traffic over the backbone network, e.g., the backbone network
infrastructure among lamp posts in smart cities is shared by
other networks. Moreover, forwarding a large amount of data
increases the backbone delay, i.e., the time for AP1 to receive
the raw samples from AP2. Thus, the average AoI may still be
high, even if the update packet is eventually decoded at AP1.

Modern channel decoding methods often utilize soft in-
formation on the coded bits of a packet that give the log-
likelihood ratio (LLR) of the probabilities of the bits being
zero and one, referred to as soft bits [15]. Built upon Co-AP,
we further investigate an improved Co-AP system, referred to
as the Soft-Co-AP system. Instead of forwarding raw signals,
Soft-Co-AP forwards soft bits of the coded packet from AP2
to AP1, when AP2 fails to decode the packet. With the help
of soft bits, even if both packet copies fail to be decoded at
the APs, the packet can still have a chance to be decoded
after joint decoding at AP1. For fast decoding, the LLRs of
the coded packet at AP2 generally need to be discretized and
quantized from real numbers to integers before forwarding to
the channel decoder in many practical systems. For example,
a soft bit can be represented by eight quantization bits in our
adopted SDR implementation [16], i.e., a soft bit is an integer
ranging from 0 to 255, with 0 (255) being most likely to be
a coded bit of 0 (1). This further reduces the amount of data
forwarded over the backbone network.

Intuitively, the more quantization bits used to represent a
soft bit, the better the joint decoding performance at AP1, i.e.,
using more quantization bits loses less information about the
original real-value LLR [15]. However, more quantization bits
used lead to a higher backbone delay, affecting the average
AoI. In contrast, using fewer quantization bits leads to a lower
backbone delay, but degrades the joint decoding performance.
Hence, the impact of the number of quantization bits on the
average AoI requires an in-depth investigation in a backbone-
assisted network considered in this paper.

Finally, we conduct experiments with real Ethernet back-
bone delay to compare the average AoI between Co-AP
and Soft-Co-AP. Furthermore, we study the average AoI of
Soft-Co-AP under different numbers of quantization bits and
network configurations. Our SDR experimental results show
that when the number of sensors is large (say, 30 sensors),
Soft-Co-AP further reduces the average AoI of Co-AP by
12%. In addition, we observe from our experiments that four
quantization bits per soft bit are usually enough to achieve
the best average AoI performance of Soft-Co-AP, owing to
the tradeoff between the joint decoding performance and the
backbone delay. Overall, Soft-Co-AP is a viable solution for
improving information freshness with massive IoT sensors.

To sum up, there are three major contributions in this paper:
1) We are the first to study backbone-assisted cooperative

APs to improve information freshness. Our SDR exper-
iments show that a simple Co-AP system wherein only
decoded packets are forwarded through the backbone
significantly reduces the average AoI of the network by
50%, compared with a conventional single-AP system.

2) We further investigate an improved Co-AP system,
called Soft-Co-AP. Soft-Co-AP can forward the soft bits
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of update packets that are failed to be decoded. While
more quantization bits per soft bit improve the successful
decoding probability of packets, a more considerable
backbone delay is induced. Since both successful de-
coding probability and backbone delay affect the average
AoI performance, we experimentally explore the impact
of the number of quantization bits per soft bit on the
average AoI in Soft-Co-AP.

3) We demonstrate the practical feasibility of status update
systems with backbone-assisted cooperative APs. SDR
experimental results indicate that the average AoI perfor-
mance of Soft-Co-AP outperforms Co-AP and single-AP
significantly, especially when the number of sensors is
large. Interestingly, the number of quantization bits per
soft bit in Soft-Co-AP is usually neither too large nor
too small to achieve a good average AoI performance.

The rest of this paper is organized as follows. Section
II details related work on AoI and compares Co-AP/Soft-
Co-AP with relevant techniques in the existing literature.
Section III describes the system model of Co-AP and previews
experimental results, showing that Co-AP reduces average
AoI compared with the single-AP system. In Section IV, we
present Soft-Co-AP and explain the joint decoding mechanism
with the help of soft bits. Practical experimental evaluations of
the average AoI in different systems are discussed and com-
pared in Section V. Finally, conclusions are drawn in Section
VI. Table I summarizes the key acronyms and notations of this
paper.

II. RELATED WORK

To characterize the freshness of the received information at
the destination, AoI was introduced in vehicular networks [7].
Later, AoI was investigated in various wireless communication
scenarios, such as industrial IoT [10], [17], health monitoring
[18], [19], and satellite networks [20]. At the beginning of
the study of AoI, the queuing theory was widely used to in-
vestigate the age performance under different abstract queuing
models [8], [21], [22]. In addition, different user scheduling
algorithms were proposed, aiming to minimize different age
metrics, such as average AoI [8] and peak AoI [23]. These
works were usually theoretical in nature and based on an ideal
assumption that the status update is sent through a perfect
channel without packet errors.

Recent studies on AoI focus more on the lower layer of the
communication stack, i.e., PHY and MAC layers, taking unre-
liable wireless channels into account. To mitigate the wireless
impairments that cause packet errors or loss, different PHY-
layer techniques are proposed to reduce the average AoI. For
example, [24], [25] focused on packet retransmission in which
automatic repeat request (ARQ) or hybrid ARQ (HARQ)
is used to improve the packet reception probability. Packet
management techniques on the old packets and the newly
generated packets at the transmitter were carefully designed
to improve information freshness [26]–[28]. Besides, age-
aware channel coding techniques were proposed in [9], [10],
indicating that optimizing the average AoI usually leads to
different designs of coding redundancy and coding strategies.

TABLE I: List of Key Acronyms and Notations

AoI : age of information
AP : access point

AWGN : additive white Gaussian noise
BPSK : binary phase shift keying

CP : cyclic prefix
FFT : fast Fourier transform

IFFT : inverse fast Fourier transform
LLR : log-likelihood ratio

MAC : media access control
MIMO : multiple-input-multiple-output

MRC : maximum ratio combining
OFDM : orthogonal frequency-division multiplexing

SDR : software-defined radio
SNR : signal-to-noise ratio

TDMA : time division multiple access
UHD : USRP hardware driver

VA : Viterbi decoding algorithm
USRP : universal software radio peripheral

N : the number of sensors
T : time slot duration
Ci

j : the j-th update packet generated by sensor i
tij : generation time of the j-th update packet of sensor i

∆i(t) : instantaneous AoI of sensor i at time t
Ui(t) : generation time of the latest update received from sensor i at time t

∆̄i : average AoI of sensor i
Zi(w) : time required for the w-th update since the (w-1)-th update
tdelay : backbone delay

V i : binary codeword of packet Ci after channel coding
vi[k] : the k-th coded bit of V i

X : BPSK modulated symbols of V i

x[k] : the k-th modulated BPSK symbol of X
Yr : received symbols at AP r, r ∈ {1, 2}

yr[k] : the k-th received symbol at AP r, r ∈ {1, 2}
hr[k] : channel gain of the k-th symbol at AP r, r ∈ {1, 2}
n[k] : AWGN of the k-th symbol at AP r, r ∈ {1, 2}
x̃r[k] : LLR of the coded bit vi[k] at AP r, r ∈ {1, 2}

x̃r,q [k] : 8-bit quantized soft bit of vi[k] at AP r, r ∈ {1, 2}
x̃co[k] : LLR of vi[k] when jointly considering two APs by MRC

x̃r,q,m[k] : m-bit quantized soft bit at AP r, r ∈ {1, 2}
x̃co
q [k] : combined quantized soft bit of vi[k] in Soft-Co-AP

Conventional multiple-input-multiple-output (MIMO) sys-
tems increase spatial diversity by equipping with more than
one antenna at the receiver [14]. MIMO systems were inves-
tigated in [29], [30] to improve the AoI performance. The
backbone-assisted cooperative-AP system considered in this
paper use multiple receivers to exploit spatial diversity. Hence,
it shares the same idea as MIMO systems that additional
degrees of freedom increase the packet reception probability.
However, traditional MIMO systems, where multiple antennas
are mounted on the same receiver, are different from our
cooperative-AP scenario, where APs are interconnected with
a backbone network. Specifically, as presented in this work,
the backbone delay therein does affect the AoI performance,
which does not occur in conventional MIMO systems.

Our backbone-assisted cooperative-AP systems, namely Co-
AP and Soft-Co-AP, are also similar to the distributed MIMO
systems studied in [32], [33]. Coordinated multipoint (CoMP)
[35], [36] and cell-free massive MIMO [37] are examples of
distributed MIMO systems where spatially separated transmit-
ters form a virtual MIMO system for multiple access. Apply-
ing previous works on CoMP or cell-free massive MIMO to
status update systems requires cooperative APs to exchange
raw signals for joint decoding. However, this raw signal
exchange is typically accomplished by backhaul networks
connected with dedicated high-speed fibers. When connected
via lower-cost Ethernet, previous research [31], [34] pointed
out that exchanging raw signal samples over the Ethernet
backbone could lead to unaffordable traffic. More importantly,
the high backbone delay induced is detrimental to low-AoI net-
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works. Besides, [38], [39] also exploited the soft information
from multiple APs to improve decoding performance as Soft-
Co-AP does. However, all the above works on cooperative
receivers focused on boosting system throughput rather than
reducing AoI. By contrast, this paper examines the design of
soft bits (i.e., the number of quantization bits representing each
coded bit shared over the backbone) on the average AoI. We
experimentally show that good average AoI performance is
usually achieved when the number of quantization bits per soft
bit is neither too large nor too small. Such results also indicate
that exchanging raw samples as in CoMP or cell-free MIMO
does not reduce the average AoI due to the high backbone
delay induced when exchanging a large volume of raw signal
samples.

III. COOPERATIVE ACCESS POINTS I: FORWARDING
DECODED PACKETS

We now detail the status update system architecture with
backbone-assisted cooperative APs. Specifically, this section
focuses on a cooperative scheme in which only the decoded
packets are shared by an Ethernet backbone connecting the
cooperative APs. We show that sharing the decoded packets
through the Ethernet backbone improves information fresh-
ness. Section IV further studies forwarding the soft bits of
coded packets when the packets are not successfully decoded
at the APs. In both Sections III and IV, we focus on two
cooperative APs for easy illustration. Generalization from two
APs to multiple APs is straightforward.

A. System Model

Considering a dense AP scenario, we focus on a status
update system where two neighboring APs, namely AP1
and AP2, serve multiple sensors located in the overlapping
coverage area of the two APs, as shown in Fig. 1(b). A total of
N sensors want to send update packets to AP1. Let us assume
that AP1 is the primary AP and AP2 is the secondary AP. In
practice, each AP could be primary or secondary to different
sensors, which can be directly generalized from our current
example. Both AP1 and AP2 receive the wireless signals sent
by the sensors and try to decode their update packets. An
Ethernet backbone connection is established between AP1 and
AP2 so that information can be forwarded from the secondary
AP (AP2) to the primary AP (AP1). In this section, the infor-
mation forwarded over the backbone is restricted to decoded
packets only. We refer to the above system architecture as the
backbone-assisted COoperative-AP (Co-AP) system.

Throughout this paper, we assume that the N sensors
send their update packets in a TDMA manner, where time
is divided into a series of TDMA rounds. A TDMA round
consists of N time slots with the same duration T . Different
sensors send their packets in a round-robin manner, and each
sensor occupies a time slot. Note that Co-AP applies to other
channel access schemes such as carrier-sensing multiple access
(CSMA) used in the IEEE 802.11 standards [40] as well.

We further assume a generate-at-will packet generation
model in which the update packet about the observed phe-
nomena can be generated when the sensor has the transmission
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Fig. 2: An example of instantaneous AoI of sensor i when
using single-AP or Co-AP respectively.

opportunity [2]. Following the generate-at-will model, in each
TDMA round, a sensor generates and sends a new update
packet just at the beginning of its allocated time slot. This
ensures that the sampled information is as fresh as possible,
i.e., a sensor reading is obtained just before its transmission
opportunity. More specifically, with respect to Fig. 2, sensor
i generates and sends packet Ci

j at tij in TDMA round j and
completes the transmission at ti+1

j , where ti+1
j = tij + T .

Both AP1 and AP2 try to decode Ci
j at ti+1

j . If AP2 decodes
Ci

j successfully, it forwards Ci
j to AP1 through the Ethernet

backbone in Co-AP. The evolution of AoI is then described in
detail below.

B. Age of Information (AoI)

In the status update system shown in Fig. 1(b), the primary
AP, AP1, wants to receive the update packets from sensors
as fresh as possible. This paper adopts AoI to quantify the
information freshness. At any time t, the instantaneous AoI of
sensor i, i ∈ {1, 2, ..., N}, measured at the primary AP (i.e.,
AP1), is defined by

∆i(t) = t− Ui(t), (1)

where Ui(t) is the generation time of the last successfully
received update packet of sensor i at AP1. The smaller the
instantaneous AoI ∆i(t), the more recent the information from
sensor i. With the instantaneous AoI ∆i(t), we can compute
the average AoI, which measures the time average of the
instantaneous AoI. The average AoI of sensor i, ∆i, is defined
by

∆i = lim
T→∞

1

T

∫ T

0

∆i(t)dt. (2)

We now focus on an example shown in Fig. 2 to see how
cooperative APs help reduce the average AoI, compared with
conventional systems with non-cooperative APs. If APs do
not cooperate, AP2 does not forward the decoded packets to
AP1, i.e., the system is in fact a single-AP system. Let us first
consider the instantaneous AoI of sensor i in single-AP, as
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depicted by the black curve in Fig. 2. In Fig. 2, sensor i sends
update packets Ci

j−1, Ci
j , and Ci

j+1 at times tij−1, tij , and
tij+1, respectively. Only packets Ci

j−1 and Ci
j+1 are received

successfully by AP1. Hence, the instantaneous AoI is reduced
to T at times ti+1

j−1 and ti+1
j+1. When AP1 fails to decode packet

Ci
j , the instantaneous AoI continues to increase. In other

words, between the two consecutive updates at times ti+1
j−1 and

ti+1
j+1, the instantaneous AoI has to increase linearly, resulting

in a trapezoidal area ASi
i for user i under the instantaneous

AoI curve, as shown in Fig. 2. We refer to this area as the
AoI area.

The average AoI is calculated by accumulating a series of
AoI areas, divided by the total time [8], i.e.,

∆i = lim
T→∞

1

T

∫ T

0

∆i(t)dt = lim
W→∞

∑W
w=1 A

Si
i (w)∑W

w=1 Zi(w)
, (3)

where ASi
i (w) is the w-th AoI area and Zi(w) is the time

required for the w-th update since the (w− 1)-th update. It is
obvious that during the same time period, a smaller AoI area
results in a smaller average AoI.

Now we consider a Co-AP system. The instantaneous AoI
of sensor i is depicted by the red curve in Fig. 2. Suppose
that AP1 fails to decode packet Ci

j at ti+1
j = tij +T , but AP2

decodes Ci
j successfully. Then AP2 forwards the decoded Ci

j

to AP1 through the Ethernet backbone. In Fig. 2, we assume
that AP1 receives Ci

j forwarded by AP2 after a backbone delay
tdelay , i.e., AP1 receives Ci

j at tij
′
= tij + T + tdelay . Hence,

the instantaneous AoI of sensor i can be reduced to T + tdelay
at tij

′. Compared with single-AP, thanks to the update packet
forwarded by AP2, the instantaneous AoI in Co-AP can be
reduced before the next update opportunity at ti+1

j+1. This leads
to a much smaller AoI area under the instantaneous AoI curve.
Based on (3), a smaller AoI area leads to a smaller average
AoI given the same time duration.

From the above example, we observe that in Co-AP, the
decoded packets forwarded by AP2 can reduce the average
AoI as long as the backbone delay tdelay is small enough. For
example, in Fig. 2, AP1 should receive Ci

j from AP2 before
ti+1
j+1 (this is the time of the next update packet decoded by

AP1 itself) so as to reduce the time interval between two con-
secutive updates. In practical Ethernet backbone environments,
the backbone delay is random and depends on the backbone
traffic. The merits of backbone-assisted Co-AP systems should
be validated in real wireless systems, as will be shown later
in this paper.

C. Co-AP Reduces Average AoI

Let us preview some experimental results on SDR [41]
and compare the average AoI between single-AP and Co-AP.
In this experiment, we assume that the number of sensors
is 10, and they have the same received SNR at the APs.
The detailed experimental setup and results can be found in
Section V. We deploy the Universal Software Radio Peripheral
(USRP) devices [42] in an indoor environment and conduct
experiments on our prototype.

We conduct trace-driven simulations. Specifically, as will
be detailed in Section V-A, we first obtain the physical
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Fig. 3: Experimental average AoI of sensor i in single-AP
and Co-AP systems when the number N of sensors is 10 and
SNRAP2
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i means sensor i’s SNR at AP2).

(PHY)-layer decoding outcomes using SDR, i.e., collecting
the decoding results at the two APs, and then use the traces to
create events in AoI simulations. In this experiment, we vary
the SNR of all sensors at AP1 (SNRAP1) from 5dB to 10dB
and fix the SNR at AP2 (SNRAP2) to 10dB. As such, sensors
have better channel conditions at AP2 than at AP1. Also, note
that the backbone delay statistics are collected from the real
Ethernet backbone (see Section V-A for the backbone delay
measurement setup).

Fig. 3 plots the average AoI of one sensor (say, sensor i)
versus SNRAP1. We see in Fig. 3 that Co-AP has a signifi-
cantly lower average AoI than single-AP does, especially when
the received SNR difference between the two APs is large.
For example, when SNRAP1 = 6dB and SNRAP2 = 10dB,
Co-AP reduces the average AoI of sensor i by around 50%
compared with single-AP. Thanks to the decoded packets
forwarded by AP2, the instantaneous AoI of sensor i can
be dropped before the update opportunity in the next TDMA
round, thus achieving higher information freshness.

Notice that in Co-AP, AP2 forwards an update packet to
AP1 only when the packet is decoded successfully. When
AP2 cannot decode the packet, intuitively, it can forward the
raw complex signal samples to AP1 so that AP1 can try to
decode the packet again by jointly using the signals received
at both APs. However, forwarding raw signal samples leads
to a large amount of backbone traffic and a high backbone
delay [31], [34], thus affecting the AoI performance. To avoid
high backbone delay and further improve the average AoI
performance, a promising solution is to forward the soft bits
of the coded packet for joint decoding at the primary AP.
Section IV below considers an improved Co-AP system where
the secondary AP can forward soft bits to the primary AP to
help with status updates.
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IV. COOPERATIVE ACCESS POINTS II: FORWARDING SOFT
BITS

In this section, we present an improved Co-AP system,
referred to as the Soft-Co-AP system. Comparing with Co-
AP, Soft-Co-AP adds a mechanism that the secondary AP can
forward the soft bits of a coded packet to the primary AP
through the Ethernet backbone. In other words, when AP2
fails to decode an update packet, AP2 forwards the soft bits
of that packet to AP1. AP1 tries to recover the update packet
it previously failed to decode using its own received samples
and the soft bits forwarded by AP2. Section IV-A describes the
overall system architecture and explains the soft bits forwarded
by AP2. After that, Section IV-B presents the joint decoding
mechanism with the help of soft bits. In particular, we explain
the impact of soft bits on the average AoI.

A. Overall Soft-Co-AP System Architecture

As illustrated in Fig. 4, to send an update packet, sensor
i first encodes a source update packet Ci (for simplicity, we
drop the TDMA round index j) to the binary codeword V i =
(vi[1], ..., vi[k], ...), where vi[k] ∈ {0, 1} is the k-th coded
bit of Ci. In this paper, we assume the use of convolution
codes defined in the IEEE 802.11 standards [40] as the PHY-
layer channel code to improve transmission reliability. The
codeword V i is then BPSK-modulated into the BPSK symbols
X = (x[1], ..., x[k], ...), where x[k] = 1 − 2vi[k]. Extensions
to higher-order modulations beyond BPSK are straightforward.
As in 802.11, our system uses orthogonal frequency division
multiplexing (OFDM) at the PHY layer. Specifically, inverse
fast Fourier transform (IFFT) is used so that BPSK symbols X̂
are modulated into X̂ = (x̂[1], ..., x̂[k], ...) at the transmitter,
which are sent to both APs. In addition, a cyclic prefix (CP)
is inserted for each OFDM symbol to deal with multi-path
fading [14].

Both AP1 and AP2 receive the signals sent by sensor
i, i.e., Y1 = (y1[1], ..., y1[k], ...) and Y2 = (y2[1], ..., y2[k], ...)
are frequency-domain signals after FFT at the receiver, re-
spectively, where yr[k] is the k-th symbol received at AP
r ∈ {1, 2}. Assuming that the multi-path effect can be dealt
with by the CPs of OFDM symbols, yr[k] is given by

yr[k] = hr[k]x[k] + n[k], (4)

where x[k] is the k-th transmitted BPSK symbol, n[k] is the
additive white Gaussian noise (AWGN) with variance σ2, and
hr[k] is the channel gain of symbol x[k] at AP r.

Both APs adopt the soft-input Viterbi decoding algorithm
(VA) to decode the source packet Ci. Specifically, soft bits are
computed from the received symbols Yr at AP r, which are
then fed to the Viterbi decoder to decode Ci. The idea of the
soft-input VA is to provide a confidence metric x̃r[k] of AP r
for each coded bit vi[k] to the Viterbi shortest-path algorithm.
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Fig. 4: The structure of sensor i’s transmitter and both APs’
receivers operating during one time slot in Co-AP and Soft-
Co-AP systems.

The confidence metric x̃r[k] is referred to as the soft bit of
vi[k] and is computed by the log-likelihood ratio (LLR), i.e.,

x̃r[k] = log
P0[k]

P1[k]

=
1

2σ2
(−|yr[k]− hr[k]|2 + |yr[k] + hr[k]|2)

=
2

σ2
yr[k] · hr[k] (5)

∝ yr[k] · hr[k], (6)

where

P0[k] = Pr(x[k] = 1|yr[k]) =
1√
2πσ2

e
−|yr [k]−hr [k]|2

2σ2 , (7)

P1[k] = Pr(x[k] = −1|yr[k]) =
1√
2πσ2

e
−|yr [k]+hr [k]|2

2σ2 . (8)

The dot “ · ” in (5) represents the dot product. We denote
the two complex numbers yr[k] and hr[k] as vectors with two
elements, one of which is the real part of the corresponding
complex number and one of which is the imaginary part. From
(5) to (6), we remove the constant term 2

σ2 since the constant
term does not affect the shortest path found by VA.

For easy implementation and fast decoding, the soft-input
Viterbi decoder adopted in the many practical systems (includ-
ing the SDR platform used in this paper) accepts confidence
metrics represented by integers from 0 to 255. Since x̃r[k] is
a real value, it needs to be quantized before feeding to the
Viterbi decoder, i.e., x̃r[k] needs to be quantized into x̃r,q[k].
For simplicity, let us consider a noiseless case to explain the
quantization procedure. According to (6), we have

x̃r[k] ∝ yr[k] · hr[k] = x[k]× |hr[k]|2, (9)

where x[k] ∈ {1,−1}. That is, x̃r[k] ∝ ±|hr[k]|2. Over
all k, we focus on the constellation points with the largest
magnitude, which is given by

|hr,max|2 = max
k

|hr[k]|2. (10)

As in [43], we quantize x̃r[k] to x̃r,q[k] by

x̃r,q[k] =

(
x̃r[k]

|hr,max|2
α+ β

)
× 255. (11)
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That is, we first map ±|hr[k]|2 to two points falling in the
interval (−1, 1). The parameters α and β are used to map the
interval (−1, 1) to a new interval roughly from 0 to 1 so that
x̃r,q[k] can fall between 0 and 255 after multiplying 255. In
practice, α ∈ [0.2, 0.5] and β = 0.5. As a result, if x̃r,q[k] is
closer to 255 (or 0), vi[k] is more likely to be a coded bit of
1 (or a coded bit of 0) [43].

The quantized soft bits X̃1,q = (x̃1,q[1], ..., x̃1,q[k], ...) and
X̃2,q = (x̃2,q[1], ..., x̃2,q[k], ...) are fed into the Viterbi decoder
at AP1 and AP2, respectively, to decode Ci. If AP2 fails to
decode Ci, soft bits are forwarded to AP1 by the Ethernet
backbone and AP1 tries to decode Ci again. The joint decod-
ing mechanism with the help of soft bits will be discussed in
the next subsection.

B. Joint Decoding with the Forwarded Soft Bits

Since each soft bit x̃r,q[k] is an integer from 0 to 255(=
28−1), it requires 8 quantization bits to represent each x̃r,q[k],
r ∈ {1, 2}. As measured by our backbone delay experiments
(see Section V-A for the details), when forwarding the soft
bits to AP1, using 8 quantization bits for each x̃r,q[k] leads to
a high average backbone delay of 20ms. In general, forward-
ing more quantization bits per soft bit through the Ethernet
backbone induces higher backbone delay, thereby affecting the
AoI performance. However, forwarding fewer quantization bits
per soft bit loses information (i.e., a coarse quantization) and
degrades the joint decoding performance at the primary AP.
Next, we investigate forwarding fewer quantization bits per
soft bit to AP1 and study how to combine the information
from both APs to jointly decode update packets.

Suppose that backbone delay is not a concern. AP2 should
forward the received signal y2[k] to AP1 to achieve the
optimal decoding performance. Specifically, AP1 outputs the
confidence metric x̃co[k] by jointly considering y1[k] and
y2[k], i.e., x̃co[k] is given by

x̃co[k] = log
P co
0 [k]

P co
1 [k]

= logP co
0 [k]− logP co

1 [k],

∝ x̃1[k] + x̃2[k], (12)

where

P co
0 [k] = Pr(x[k] = 1|y1[k], y2[k])

∝ e
−|y1[k]−h1[k]|2

2σ2 e
−|y2[k]−h2[k]|2

2σ2 , (13)

P co
1 [k] = Pr(x[k] = −1|y1[k], y2[k])

∝ e
−|y1[k]+h1[k]|2

2σ2 e
−|y2[k]+h2[k]|2

2σ2 . (14)

Here, we assume the two APs have the same noise power.
From (12), we see that the optimal way to compute the LLR
of bit vi[k] is to add the soft bits x̃1[k] and x̃2[k] directly.
Given that AP1 receives a quantized version of x̃2[k] from
AP2, we next present how to compute the LLR of bit vi[k]
using the quantized version of x̃2[k].

Let m denote the number of quantization bits to represent
x̃2[k]. Suppose that a m-bit quantized version of x̃2[k] is
represented by x̃2,q,m[k], m ∈ {1, 2, ..., 8}. Note that x̃2,q[k]
in (11) is a special case x̃2,q,m[k] with m = 8. We consider

Sensor AP2AP1

Fig. 5: Layout of an indoor status update system used in our
experiments. The positions of the two APs are fixed, and the
sensors are distributed in different positions. In addition, we
vary the transmit power of the sensor to get different SNR
pairs (SNRAP1, SNRAP2).

uniform quantization to quantize from x̃2,q[k] to x̃2,q,m[k].
With m ∈ {1, 2, ..., 8}, the number of quantization levels is
2m, i.e., the 2m levels are{
0, ⌊1× 255

2m − 1
⌋, ⌊2× 255

2m − 1
⌋, ..., (2m − 1)× 255

2m − 1

}
,

(15)

where ⌊·⌋ is the round-up operator to convert the values
of quantization levels to integers. Hence, x̃2,q,m[k] can be
obtained by quantizing x̃2,q[k] to the nearest quantization level.
For example, when m = 1, there are two quantization levels
{0, 255}. x̃2,q[k] is quantized to 0 if x̃2,q[k] ≤ 128 and 255
if x̃2,q[k] > 128. One-bit information can be sent to AP1 for
each x̃2,q,m[k] when m = 1.

Based on (11), given x̃2,q,m[k], a reconstructed soft bit
x̂2,q[k] at AP1 is given by

x̂2,q[k]
∆
=

x̃2[k]

|h2,max|2
=

(
x̃2,q,m[k]

255 − β
)

α
. (16)

Notice that |h2,max|2 is not available at AP1. Therefore, we
combine and quantize the information from AP1 and AP2 as
follows, assuming |h1,max|2 = |h2,max|2,

x̃co
q [k] =

((
x̃1[k]

|h1,max|2
+ x̂2,q[k]

)
α′ + β

)
× 255

=

y1[k] · h1[k]

|h1,max|2
+

(
x̃2,q,m[k]

255 − β
)

α

 α′ + β

× 255.

(17)

As α does in (11), the parameter α′ is used to control the
range of x̃co

q [k], i.e., x̃co
q [k] falls in between 0 and 255. In our

experiments, α′ = α/2 achieves good decoding performance.
The quantized soft bits X̃co

q = (x̃co
q [1], ..., x̃co

q [k], ...) are fed
into the Viterbi decoder at AP1 to decode Ci. In the next
section, we experimentally study the effect of m on the average
AoI.
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V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
the average AoI of status update systems with backbone-
assisted cooperative APs. We first describe the PHY-layer
implementation and the setup of our experiments, including
the measurement of Ethernet backbone delay. After that, we
present the experimental results of the average AoI perfor-
mance in single-AP, Co-AP, and Soft-Co-AP.

A. Implementation and Experimental Setup

1) PHY-layer Implementation and Experimental Setup: Our
system prototypes are built on the USRP hardware [42] and the
GNU Radio software [41] with the UHD driver. We conduct
experiments on our prototypes in an indoor laboratory with
USRP devices acting as APs and sensors, as shown in Fig. 5.

At the PHY layer, all the systems adopt OFDM transmis-
sion. BPSK modulations and the [133, 171]8 rate-1/2 convo-
lutional codes defined in the IEEE 802.11 standards are used
[40]. Each update packet is preceded by a preamble before
the payload. The preamble assists the receivers with packet
synchronization and channel estimation. In our experiments,
the duration of an update packet, tpk, is around 1 microsecond
(ms), which is calculated by

Tpk =

(
320 +

768× 8× 2

48
× 80

)
/(2× 107) s ≈ 1 ms,

(18)

where 320 is the number of samples in the preamble. 80 is
the total number of samples in one OFDM symbol, consisting
of a 64-FFT OFDM symbol and a 16-sample cyclic prefix.
Although an OFDM symbol has 64 subcarriers, only 48
subcarriers are used for data transmission. 768 × 8 × 2/48
gives the number of OFDM symbols in an update packet with
768 bytes and a channel coding rate of 1/2. 2×107 means the
bandwidth is 20MHz. To facilitate packet decoding, we add a
guard interval in each time slot so that the total duration of a
time slot is 1.2ms.

In our experiments, we perform controlled experiments for
different received SNRs from 5dB to 10dB. Specifically, we
place USRPs (sensors) at different locations (see Fig. 5) and
control the transmit power of USRPs to simulate different
received SNR pairs (SNRAP1, SNRAP2) at the two APs. We
use AP1 to schedule the transmission of 50, 000 packets of a
sensor for each SNR pair (SNRAP1, SNRAP2). To compute
the average AoI, we first collect the decoding outcomes (i.e.,
with and without joint decoding) of the sensors at the APs
under different SNR pairs (SNRAP1, SNRAP2). Since sen-
sors are independent in TDMA, after collecting the decoding
outcomes at different positions, we can generate traces to drive
the AoI simulations with a large number of sensors. Based
on the successful or failed decoding in each TDMA round,
we generate traces to drive the AoI simulations for different
systems. In particular, the instantaneous AoI can be collected
in each time slot, from which we compute the average AoI.

2) Backbone Delay Measurement: We use the Linux PING
command to measure backbone delay. PING is a network
software that measures the round-trip time of messages (called
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Fig. 6: The PHY-layer packet decoding probability. We vary
the SNR at AP1 from 5dB to 10dB, and the SNR at AP2
is larger than that at AP1 by 1dB. The blue bars represent
the packet decoding probability of single-AP, the green bars
represent the improvement of the packet decoding probability
by Co-AP, and the red bars represent the improvement of the
packet decoding probability by Soft-Co-AP when m = 4.

PING packets) sent from the originating host to the destination
host, which are echoed back to the source.1 Specifically,
we adopt the experimental setup with hierarchical switches
and wireless devices presented in [31] for measuring the
packet forwarding delay between APs, where we purposely
generate high trafc to simulate a challenging WLAN-Ethernet
environment. Moreover, we note that PING measures the
round-trip delay. As in [31], symmetric and bidirectional trafc
ows are established so that we can further assume that the one-
way backbone delay is half of the round-trip delay of PING.
We refer interested readers to Appendix A and [31] for the
detailed setup.

We next discuss the payload of PING packets used to
measure backbone delay. Recall that in Co-AP, AP2 needs
to forward a decoded packet to AP1. To do so, the wireless
packets destined for AP1, but received at AP2, are encap-
sulated in Ethernet frames for forwarding to AP1 (i.e., this
procedure is referred to as Ethernet Tunneling in [31]). Hence,
metadata such as the MAC header of a wireless packet should
be included in the encapsulated Ethernet frame, e.g., AP2
can examine the MAC address in the MAC header to nd
out that the received packets are destined for AP1. In our
implementation, we assume that each wireless uplink packet
has a 30-bytes MAC header and 768-bytes data so that the
payload of a PING packet is 798 bytes when a decoded packet

1We note that the cooperative APs in the Ethernet backbone typically
work like switches that forward trafc based on MAC addresses. PING adds
additional delays because it uses the ICMP protocol. ICMP is part of Internet
Protocol related to the network layer [44]. If delays are directly measured
between switches, we need to get into APs and change the lower-layer code
(related to Ethernet). This is not feasible with many commercial APs which do
not open up their codes (i.e., they are not open source). However, compared
with the queuing and processing delays, the additional delays introduced by
PING at the network layer are relatively small [31].
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Fig. 7: The PHY-layer packet decoding probability for diver-
sity combining using different quantized levels of soft bits,
where SNRAP1

i = 5dB and SNRAP2
i = 6dB.

needs to be forwarded to AP1 (i.e., the PING size is 798 bytes
when executing the PING command).

For Soft-Co-AP, AP2 needs to forward the quantized soft
bits of a coded packet to AP1, where each soft bit is rep-
resented by m quantization bits. Since we use the rate-1/2
convolutional codes, the size of the quantized soft bits for each
coded packet is 1536m(= 2×m×768) bytes. Thus, to measure
the backbone delay when AP2 forwards the quantized soft bits
to AP1, we set the payload of PING size to (1536m + 30)
bytes for different m. Furthermore, notice that the maximum
transmission unit (MTU) of an Ethernet frame is usually 1500
bytes. When the PING size exceeds 1500 bytes, the whole
payload will be separated and encapsulated into multiple PING
packets. For example, a PING size of 798 bytes requires only
one PING packet; when the PING size is 12318 bytes (i.e.,
m = 8), nine PING packets are required. The more PING
packets, the more backbone delay is required, as will be
presented in the following subsection.

B. Experimental Results

In Section III, we have previewed the average AoI of single-
AP and Co-AP systems when the difference in SNR between
AP1 and AP2 varies (see Fig. 3). Now, this subsection further
presents the PHY-layer packet decoding probability obtained
in our SDR prototype and the backbone delay statistics. After
that, the average AoI performances of single-AP, Co-AP, and
Soft-Co-AP are presented and compared. Unless specified
otherwise, we consider an SNR-balanced scenario, in which
all sensors have the same received SNR at AP1 or AP2. We
vary the SNR of sensors at AP1 from 5dB to 10dB. The SNR
at AP1 is smaller than that at AP2 by 1dB to simulate different
signal paths.

1) PHY-layer Packet Decoding Probability: Let us look
at the PHY-layer decoding probability plotted in Fig. 6. We
examine the packet decoding probabilities at the primary AP
(AP1) for different systems. The blue bars represent the packet
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Fig. 8: The measured real backbone delay samples.

decoding probability of single-AP, and the green bars represent
the improvement of Co-AP in packet decoding probability over
single-AP. We see that the improvement in packet decoding
probability is significant when Co-AP is used. For example,
when SNRAP1 = 5dB and SNRAP2 = 6dB, Co-AP
increases the packet decoding probability by around 30% over
single-AP.

Soft-Co-AP further forwards the quantized soft bits of coded
packets to AP1, when AP2 cannot decode update packets. The
red bars in Fig. 6 represent the further improvement of packet
decoding probability by Soft-Co-AP. Since soft bits can be
represented by different m, Fig. 6 plots the case when m = 4.
Fig. 7 plots the packet decoding probability versus m, when
SNRAP1 = 5dB and SNRAP2 = 6dB (other SNR pairs
(SNRAP1, SNRAP2) lead to similar observations). From
Fig. 7, we see that a larger m leads to a better joint packet
decoding performance. However, as mentioned earlier, a larger
m also leads to a larger backbone delay. We next present the
backbone delay statistics measured in the experiments.

2) Backbone Delay Statistics: We now look at the backbone
delay statistics. Fig. 8 plots the backbone delay samples when
AP2 forwards different types of data in our experiments,
namely the decoded packets in the Co-AP system and the
quantized soft bits (m ∈ {1, 4, 8}) in the Soft-Co-AP system.
From Fig. 8, we see that the backbone delays are dynamically
changing, e.g., in Soft-Co-AP, the instantaneous backbone
delay fluctuates between 15ms and 30ms when m = 8.
Furthermore, the more PING packets required (i.e., a larger
m), the more time for AP1 to receive the information from
AP2. For example, the average backbone delay is around 10ms
and 20ms, when m = 4 and m = 8, respectively. Hence,
although a larger m results in a higher decoding probability,
it also leads to a larger average backbone delay. Since both
the decoding probability and the backbone delay affect the
information freshness, the average AoI performance should
be carefully studied, as presented next.

3) Average AoI Comparison: First, let us look at the
average AoI performance of different systems in the SNR-
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Fig. 9: The average AoI performance of the system for Single-
AP, Co-AP, and Soft-Co-AP when all sensors have the same
received SNR at the APs. The number N of sensors is set to
10, and the SNR of sensors at AP2 is larger than that at AP1
by 1dB.

balanced scenario. We set the number of sensors to 10. The
average AoI of a sensor (say sensor i) under different systems
versus the SNR at AP1 is shown in Fig. 9 (the SNR at AP2
is larger than that at AP1 by 1dB). We can see that Co-AP
has a much lower average AoI than single-AP, thanks to the
decoded packets forwarded by AP2 through the backbone. For
example, when SNRAP1 = 5dB, Co-AP reduces the average
AoI of single-AP by around 40%. This is consistent with the
preliminary experimental results shown in Fig. 3.

As for the average AoI of Soft-Co-AP, Fig. 9 shows that
when the SNR is low (i.e., 5dB∼ 7dB), Soft-Co-AP further
reduces the average AoI compared with Co-AP. When the
SNRs at AP1 are larger than 7dB, the improvement by Soft-
Co-AP is small because Co-AP can already perform well, i.e.,
AP2 can decode update packets so there is no need to forward
soft bits.

Interestingly, as indicated by Fig. 9, the average AoI per-
formance of m = 4 is slightly better than that of m = 8, even
though m = 8 leads to a higher packet decoding probability.
When the number of sensors is 10, the total duration of a
round is 12ms. However, the average backbone delay when
m = 8 is around 20ms, as shown in Fig. 8. This means that
even if AP1 can receive the soft bits from AP2 after 20ms
and the “old” update packet can be recovered successfully at
AP1, a “new” update packet has been sent in a new TDMA
round. Therefore, the new update packet may be successfully
received by AP1 before the old update packet, i.e., the recovery
of the old update packet does not help reduce the AoI. On
the other hand, even if no new packets can be received,
the instantaneous AoI is still large when the old packet is
decoded due to the considerable backbone delay. By contrast,
the average backbone delay when m = 4 is around 10ms,
which is smaller than a TDMA round. In other words, AP1
can try to decode the old packet again before a new update
packet is sent in a new TDMA round. If the old packet can

be recovered, the average AoI can be reduced, as indicated in
Fig. 2 of Section III.

Now, we further study the scenarios with more sensors
and the average AoI of the whole network in Fig. 10(a). We
consider the SNR-balanced scenario with SNRAP1 = 5dB
and SNRAP2 = 6dB and vary the number of sensors. We
find that the larger the number of sensors, the more significant
the improvement of Soft-Co-AP over Co-AP. For example,
when N = 30, Soft-Co-AP reduces the average AoI by 12%
over Co-AP. With the increase in the number of sensors, the
time of one TDMA round increases accordingly. In this case,
if a sensor fails to update in a TDMA round, it needs to
wait a longer time for the next update opportunity, i.e., the
time interval between two consecutive updates becomes larger.
With a longer TDMA round, in most scenarios, AP1 can try
to decode the old packet again before a new TDMA round
starts, even when m = 8. Hence, the higher packet decoding
probability in Soft-Co-AP can effectively reduce the average
AoI. In addition, since the duration of a TDMA round is large,
m = 4 and m = 8 lead to almost the same average AoI
performance, indicating that m = 4 is a more viable option
since it reduces the backbone traffic.

SNR-imbalanced scenario: In addition, we look at the av-
erage AoI performance of Soft-Co-AP in an SNR-imbalanced
scenario, as shown in Fig. 10(b). Specifically, sensors have
different received SNRs at AP1 or AP2. We assume that half
of the sensors have an SNR of 5dB at AP1 and 6dB at AP2,
and the other half have an SNR of 10dB at AP1 and 11dB
at AP2. In Fig. 10(b), we can observe the same phenomenon
in Fig. 10(a), i.e., the larger the number of sensors, the more
significant the improvement of Soft-Co-AP over Co-AP. It is
enough to adopt the number of quantization bits per soft bit
that is neither too large nor too small (i.e., m = 4) to achieve
a good average AoI performance. Therefore, Soft-Co-AP is
a practical solution to improve information freshness with a
large number of sensors.

More than two cooperative APs: In practice, it is likely
that more than two APs can receive wireless signals from
the same sensor. Here, we further consider an experiment
with more than two cooperative APs. The average AoI of the
network under different numbers of cooperative APs is shown
in Fig. 11. When there are more than two cooperative APs,
the experimental setup is the same as the two-AP scenarios,
except that one AP serves as the primary AP and all the other
APs serve as the secondary APs. In Fig. 11, the number of
sensors N is set to 30, and the SNR of each sensor is 5dB at
the primary AP and 6dB at the secondary APs. As shown in
Fig. 11, the average AoI is reduced for both Co-AP and Soft-
Co-AP when there are three cooperative APs, compared with
the case with two cooperative APs only. This indicates that
more APs increase spatial diversity such that an update packet
can have a higher chance of being received, thus improving
information freshness.

Moreover, we see in Fig. 11 that when the number of
cooperative APs increases from three to four, the average
AoI does not reduce further. This is because, in the three-AP
scenario, the average AoI almost reaches the optimal average
AoI in a TDMA single-AP system. It is easy to figure out that
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Fig. 10: The average AoI performance for Co-AP and Soft-Co-AP systems, versus the number N of sensors. We consider the
SNR-balanced scenario with SNRAP1 = 5dB and SNRAP2 = 6dB.
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Fig. 11: The average AoI performance versus the number of
APs. The number N of sensors is set to 30, and the SNR of
each sensor is 5dB at AP1 and 6dB at other secondary APs.

the optimal average AoI of a TDMA system with 30 sensors
is 19.2ms, where each time slot is of 1.2ms duration and
each update packet is received successfully by the AP. The
average AoI of the three-AP and four-AP systems is slightly
higher than the optimal average AoI of 19.2ms because an
additional backbone delay is induced when cooperative APs
forward information over the backbone network.

VI. CONCLUSIONS

We have demonstrated a viable solution for timely status
update systems using backbone-assisted cooperative APs. This
paper is the first attempt to study backbone-assisted coopera-
tive APs to improve information freshness. We first investigate

Co-AP, a system where the secondary AP forwards only the
decoded packets to the primary AP through the backbone.
Thanks to the forwarded decoded packets, the update packets
that fail to be decoded by the primary AP can be success-
fully recovered, thus reducing the average AoI significantly
compared with the traditional single-AP system.

We further investigate an improved Co-AP system, referred
to as the Soft-Co-AP system. Soft-Co-AP can forward the soft
bits of a coded packet to the primary AP through the backbone
when the secondary AP fails to decode the packet. Then the
primary AP tries to decode the packet again with the help of
soft bits. An interesting question here is the tradeoff between
joint decoding probability and backbone delay under different
quantization bits per soft bit, both of which affect the average
AoI. We experimentally explore the impact of the number of
quantization bits per soft bit on the average AoI in Soft-Co-AP.

Experimental results on our software-defined radio proto-
type indicate that Soft-Co-AP further improves the average
AoI performance over Co-AP, especially when the number of
sensors in the TDMA network is large. Due to the tradeoff
between joint decoding performance and backbone delay, the
number of quantization bits per soft bit is usually neither
too large nor too small to achieve a good average AoI
performance.

Overall, Soft-Co-AP is a practical solution to improve the
information freshness of a large number of IoT devices.
Moving forward, we plan to extend the current TDMA scheme
to advanced non-orthogonal multiple access schemes to further
improve the AoI performance [12]. Another possible direc-
tion is to incorporate Co-AP/Soft-Co-AP in random access
scenarios, such as a real Wi-Fi system with carrier sensing
and collision avoidance capabilities [40]. We believe that the
backbone-assisted solution applies to these scenarios, and their
performance improvements are worthy of future investigation.
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Fig. 12: Experimental Setup for the Backbone Delay Measure-
ment [31].

APPENDIX A
EXPERIMENTAL SETUP FOR THE BACKBONE DELAY

MEASUREMENT

The experimental setup for our backbone delay measure-
ments follows [31]. As shown in Fig. 12, two switches are
interconnected via Ethernet, and a personal computer (PC) is
connected to each switch. Each PC is equipped with a wireless
network interface card to serve as an AP. The two PCs (also
APs) connected by two switches simulate a practical scenario
where packets from the secondary AP may reach the primary
AP through more than one switch (i.e., a hierarchy structure).
As shown in Fig. 12, AP1 serves two users (A1 and B1),
and AP2 serves two users (A2 and B2). In addition, local file
storage is connected to switch 1, and a router is connected to
switch 2.

We measure the backbone delay by PC1 PING PC2. We
deliberately generate high traffic in the current experimental
setup to simulate a challenging WLAN-Ethernet environment.
Specifically, users A1 and A2 download a large number of
files from the local file storage. Meanwhile, users B1 and B2
receive video streams from the Internet. By doing so, PC1’s
PING packets “compete” with the traffic from the file storage
to user A2 at switch 1, and also “compete” with the traffic
from the Internet to user B2 at switch 2 in the backbone
network. This traffic setup simulates the queuing delay of each
switch. In addition, with such symmetric and bidirectional
traffic flows, we can assume that the one-way backbone delay
is half of the round-trip delay of PING.
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