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Abstract—Timely updating of Internet of Things (IoT) data
is crucial for immersive vehicular metaverse services. However,
challenges such as latency caused by massive data transmissions,
privacy risks associated with user data, and computational
burdens on metaverse service providers (MSPs) hinder contin-
uous collection of high-quality data. To address these issues,
we propose an immersion-aware model trading framework that
facilitates data provision for services while ensuring privacy
through federated learning (FL). Specifically, we first develop a
novel multi-dimensional metric, the immersion of model (IoM),
which assesses model value comprehensively by considering
freshness and accuracy of learning models, as well as the amount
and potential value of raw data used for training. Then, we design
an incentive mechanism to incentivize metaverse users (MUs) to
contribute high-value models under resource constraints. The
trading interactions between MSPs and MUs are modeled as
an equilibrium problem with equilibrium constraints (EPEC) to
analyze and balance their costs and gains, where MSPs as leaders
determine rewards, while MUs as followers optimize resource
allocation. Furthermore, considering dynamic network conditions
and privacy concerns, we formulate the reward decisions of
MSPs as a multi-agent Markov decision process. To solve this,
we develop a fully distributed dynamic reward algorithm based
on deep reinforcement learning, without accessing any private
information about MUs and other MSPs. Experimental results
demonstrate that the proposed framework outperforms state-of-
the-art benchmarks, achieving improvements in IoM of 38.3%
and 37.2%, and reductions in training time to reach the target
accuracy of 43.5% and 49.8%, on average, for the MNIST and
GTSRB datasets, respectively.

Index Terms—Equilibrium problem with equilibrium con-
straints, immersion-aware, incentive mechanism, resource allo-
cation, vehicular metaverse.
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Fig. 1. An example of AR services in the vehicular metaverse1.

THE metaverse, envisioned as a major evolutionary step
for the Internet, aims to create a fully immersive, self-

sustaining virtual environment for activities such as playing,
working, and socializing [1]. This vision is propelled by ad-
vances in fifth- and sixth-generation (5G/6G) communication
technologies, which offer low latency and high data through-
put. These technologies play a critical role in seamlessly
integrating the Internet of Things (IoT) data into metaverse
services, thus bringing the once-fictional concept of immersive
experiences closer to reality.

Metaverse services are beginning to reveal their vast po-
tential across a broad spectrum of industries, from gaming
and autonomous driving to education and marketing. Notably,
the application of vehicles within the metaverse [2], [3] has
attracted significant interest, particularly for the enhanced
traffic safety enabled by state-of-the-art augmented reality
(AR) technologies. Market report [4] forecasted that the global
automotive metaverse market will grow from 1.9 billion in
2022 to 6.5 billion by 2030. Automakers such as BMW
have increasingly invested in AR technology. As shown in
Fig. 1, augmented information makes driving safer by showing
potential hazards hidden behind the vehicle in front of you.
Moreover, Nissan’s [5] upcoming technology utilizes a 3D AR
interface that merges the real world with the virtual world
to provide the driver with augmented information about the
surrounding area. In addition, Neuron mobility2 has announced
the launch of an innovative AR parking assistance system with
the intention of improving passengers’ parking routines and
trip-end experiences.

The ability to capture information from the “real” world,
particularly the ability to collect and process massive data from
IoT devices, is the key to determining the success of immersive
services (e.g., AR) in the vehicular metaverse. Meanwhile,
the data must be processed and presented in a meaningful,
responsive, and appropriately protected way. Technically, a

1Image source: https://www.jasoren.com/ar-in-automotive/
2https://immersive-technology.com/augmentedreality/

neuron-introduces-new-ar-parking-assistant/
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high-quality experience with AR services relies on accurate
detection and classification of real-world objects (e.g., cars
and pedestrians) under complex conditions [6]. To achieve this
goal, sufficient valid data needs to be collected and processed
in depth to detect and classify objects accurately. Therefore, it
is essential to focus on effectively collecting, processing, and
protecting the data that supports a safer and more enjoyable
driving experience.

Motivations. The widely used data collection method, as
adopted by Nissan [7] and studied in [8], involves gathering
massive amounts of data through vehicle sensors, cameras, and
roadside devices, and all data being processed centrally. While
this approach has been effective for various applications, when
it comes to the situation with multiple metaverse users (MUs)
and metaverse service providers (MSPs) associated with dif-
ferent companies, the centralized data collection approach is
not applicable and may lead to the following issues. First,
AR services in the vehicular metaverse need to be highly
immersive so that MUs feel fully immersed in the rendered
environment, such as visualized driving. However, the data
synchronization will be hindered by the latency from massive
real-time data updates under unstable and resource-limited
communication conditions. Note that the value of real-time
data diminishes over time [9]. Also, delays can severely impact
the MU’s experience and cause dizziness [10]. Second, the
data to be transmitted may be sensitive and private, such as
location, movement, and biometrics, which can create a better
immersive experience but may inevitably increase the privacy
risk of MUs.

Federated learning (FL) has been adopted in prior work [6],
[11]–[13] to enable collaborative model training without shar-
ing raw data (e.g., sensor/imaging data from vehicles). In
this approach, learning models are uploaded by individual
MUs to MSPs for AR services, rather than transmitting
large volumes of data centrally, thus significantly reducing
the communication burden. However, MUs are typically self-
interested and are reluctant to share learning models with
MSPs due to the additional computation, communication, and
energy overhead. To overcome this, incentive mechanisms
using strategies such as contract theory [14], Stackelberg
game [15], [16] and multi-winner sealed-bid auction [17],
have been proposed to encourage MUs to contribute models.
However, existing studies fail to explicitly assess the model
value from multiple dimensions, making it difficult for both
MSPs and MUs to quantify the benefits of the model for
MSPs. Furthermore, most of these solutions are designed for
a single MSP and do not consider the joint optimization of
MUs’ limited computational and communication resources.
As a result, an efficient and privacy-preserving framework for
data synchronization is needed to improve the immersive AR
experience in the vehicular metaverse.

To address the above research gaps, we propose an
immersion-aware model trading framework for a multi-MSP,
multi-MU vehicular metaverse. This framework is designed to
incentivize MUs to become active contributors by providing
models tailored to the specific needs of MSPs. However, MUs
have different sampling costs and limited computational and
communication resources, while MSPs differ in their model
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Fig. 2. The outline of an immersion-aware framework for FL-assisted
vehicular metaverse.

preferences and compete with each other. These inherent
asymmetries and competitive dynamics make it challenging
to establish an efficient model trading ecosystem. This leads
to two key research questions that underpin our work:

• How can MUs be effectively incentivized to contribute
high-value learning models that benefit vehicular meta-
verse services for diverse MSPs?

• How can the dynamic competitive interactions among
MSPs be modeled to achieve a trade-off in gains between
MUs and MSPs, ensuring sustainable and stable trading
of learning models in the vehicular metaverse?

Proposed Framework and Contributions. As depicted
in Fig. 2, our model trading framework consists of four
components: FL mechanism, metric design, game modeling,
and dynamic algorithms. Specifically, we first design a new
metric called the immersion of the learning model (IoM) to
evaluate the value of learning models contributed by MUs
to MSPs. This metric jointly considers the freshness and
accuracy of the learning model, as well as the amount and
potential value of raw training data. Building on this metric,
we propose an immersion-aware incentive mechanism that
aligns the interests of both MUs and MSPs. Then, we model
the dynamic competitive trading interactions as an equilib-
rium problem with equilibrium constraints (EPEC), which is
a hierarchical optimization problem with equilibria at two
levels [18]. Moreover, given the dynamic networks and the
privacy concerns of MSPs, we formulate the reward decisions
of MSPs as a multi-agent Markov decision process (MAMDP)
and develop a multi-agent deep reinforcement learning (DRL)-
based dynamic reward (MDDR) approach to obtain the reward
decisions in a fully distributed manner. In summary, the key
contributions of this work are as follows.

• Incentive mechanism design for immersion-aware model
trading. From the perspectives of both MUs and MSPs,
we propose an incentive mechanism that encourages MUs
to contribute high-value learning models tailored to the
specific demands of MSPs. To our knowledge, this is the
first study focusing on incentive mechanism design for
efficient and privacy-preserving data synchronization in
multi-MU, multi-MSP vehicular metaverse environments.

• Novel design of multi-dimensional metric. To quantify im-
mersion enhancement provided by MUs for AR services,
we design an immersion metric of the learning model
integrating four critical dimensions: the freshness and
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accuracy of the learning model, as well as the amount and
potential value of raw training data. Freshness is captured
through age of information (AoI), while potential value
is evaluated by the difference between model predic-
tions and true labels. This metric enables fine-grained
evaluation of model value under resource constraints
and provides a basis for incentive and decision-making
strategies in model trading.

• Theoretical analysis and algorithm designs. Given mul-
tiple resource-constrained MUs and competing MSPs,
we model their interactions as an equilibrium problem
with equilibrium constraints (EPEC). We theoretically
prove the existence and uniqueness of the equilibrium,
and further develop a fully distributed MDDR approach
that adapts to dynamic environments and operates without
accessing any private information of MUs or MSPs.

• Performance evaluation. We conduct extensive numer-
ical simulations based on AR-related vehicle datasets
to validate the efficacy and efficiency of MDDR and
the proposed immersion-aware model trading framework.
Numerical results show that our proposed mechanism
improves the IoM by 38.3% and 37.2%, and reduces the
training time to reach the target accuracy by 43.5% and
49.8%, on average, for the MNIST and GTSRB datasets,
respectively, compared with state-of-the-art benchmarks.

The rest of this paper is organized as follows. Section II
discusses the related work. In Section III, we present the
system overview and design the immersion metric of the
learning model. Section IV gives the game formulation, and
Section V analyzes the existence of the equilibria at two
levels. In Section VI, we give the detailed design of MDDR.
Section VII shows numerical experiments to evaluate the
framework performance, and finally Section VIII concludes
the paper.

II. RELATED WORK

In this section, we survey work related to our study in
terms of edge-enabled vehicular metaverse services, FL for
AR, and incentive mechanisms for data synchronization in the
metaverse.

A. Edge-Enabled Vehicular Metaverse Services

Vehicular metaverse services require ultra-low latency and
high reliability to enable immersive experiences such as
AR navigation and real-time digital twins. To meet these
demands, researchers have extensively explored edge-based
strategies for task offloading and resource management. For
instance, Feng et al. [19] proposed a resource allocation
framework for AR-powered vehicular edge metaverses that
aims to maximize overall system utility. Similarly, Khan et
al. [20] introduced a cooperative framework integrating task
offloading, sensing, learning, and communication to reduce
transmission energy consumption and latency in resource-
constrained environments. Beyond static offloading, Chen et
al. [21] developed a multi-agent deep reinforcement learning
approach for dynamic avatar task migration. In terms of secu-
rity and privacy, Kang et al. [22] presented a cross-metaverse

empowered dual pseudonym management framework to miti-
gate privacy leakage risks during the dynamic communications
among vehicular edge metaverses. Moreover, an optimization
framework for AR-assisted driving was proposed in [23] to
enhance the robustness of metaverse maps against adversarial
attacks. This framework maximizes the mean average preci-
sion (mAP) of adversarial patch detection while minimizing
AR scene uplink latency and worst-case battery consumption.
Recent studies have also explored applying FL to vehicular
metaverse services as a means of preserving user privacy
during distributed model training. These efforts, particularly
in AR-enhanced metaverse environments, are discussed in the
next section. To ensure service continuity and prevent user
disengagement during unexpected failures, Qiu et al. [24]
proposed deploying redundant backup virtual vehicle services
and keeping the age of backup information to improve the
reliability of services.

These works, from diverse perspectives, have significantly
advanced the security, reliability, and performance of vehicular
metaverse services, providing valuable insights for future
research. Notably, distinct from existing studies, our work
focuses on designing an incentive mechanism that transforms
MUs into active contributors. These contributors efficiently
provide high-value models to MSPs, thereby enhancing the
overall service experience.

B. Federated Learning for AR in the Metaverse

Privacy preservation is a critical concern in vehicular
metaverse services, particularly when training models using
sensitive user data. Federated learning (FL) has emerged as
a promising technique to enable collaborative model training
without sharing raw data. For example, Chen et al. [11]
proposed a framework that integrates mobile edge computing
and FL to solve the computational efficiency and low-latency
object classification problem for AR services. However, they
did not address how communication and computational re-
sources should be allocated within the FL framework. To
overcome this limitation, Zhou et al. [12] incorporated FL into
mobile AR systems in the metaverse to enable collaborative
model training. Their approach considers the trade-offs among
energy consumption, execution latency, and model accuracy
to meet varying demands across different application scenar-
ios. To further improve learning efficiency, an adaptive and
resource-efficient FL algorithm tailored for AR applications
was proposed in [6]. This approach mitigates the effects
of non-IID data distributions, reduces resource usage, and
enhances the quality of experience. Additionally, Hazarika et
al. [13] explored the integration of quantum computing with
FL to provide a cost-efficient and adaptive solution for the
dynamic nature of vehicular environments.

Incorporating FL into AR services brings the benefits of
reduced communication latency and privacy protection. How-
ever, the existing studies fail to consider the integration of FL
into AR for the multi-MSP and multi-MU metaverse scenario,
while overlooking the selfishness of MUs, i.e., whether they
are willing to participate in FL learning.



4

C. Incentive Mechanism for Data Synchronization in the
Metaverse.

The quality of metaverse services depends heavily on mas-
sive sensing data from the real world. To facilitate this, in-
centive mechanisms are widely employed to motivate MUs to
contribute data and participate in model construction, thereby
enhancing their service experience. For instance, Zhang et
al. [25] proposed a vehicle-assisted data sensing framework
that incentivizes vehicles to contribute sensing data to meta-
verse service, improving the driving experience for vehicle
users. Similarly, Lin et al. [26] introduced a contract-based
incentive design aimed at optimizing the long-term profits of
digital twin service providers, addressing service congestion
caused by stochastic demand responses. Xu et al. [27] devel-
oped a metaverse-based unmanned aerial vehicle (UAV) swarm
system that uses digital twins and semantic communication
to enhance data synchronization and reduce communication
latency. Moreover, Lotfi et al. [28] introduced VMGuard, a
novel four-layer security framework for the vehicular meta-
verse that protects against data poisoning attacks by using a
reputation-based incentive mechanism. The framework lever-
aged user feedback and subjective logic modeling to assess
the trustworthiness of devices. However, while these works
successfully incentivize MUs to contribute raw data, they also
pose a risk to user privacy due to potential data leakage.

To address the privacy concern, Kang et al. [14] developed
a cross-chain FL framework with an AoI-based contract theory
model under prospect theory to incentivize data sharing.
They utilized a hierarchical cross-chain architecture with a
main chain and multiple subchains to perform decentralized,
privacy-preserving, and secure data training in both virtual
and physical spaces. Baccour et al. [15] proposed a dual
game-theoretic framework for federated meta-learning (FML)
in metaverse services. They introduced a reputation system
and a Stackelberg game-based incentive mechanism to enhance
data privacy, minimize energy costs, and improve FML effi-
cacy, outperforming traditional clustering methods in training
performance and metaverse utility. Li et al. [16] designed a
satisfaction metric that considers data size, AoI, and training
latency. They integrated this metric into utility functions to
incentivize node participation in FL while optimizing resource
allocation. However, these works are designed for a single
MSP scenario, limiting scalability and applicability in multi-
server scenarios commonly encountered in large-scale meta-
verse environments.

Building on the concept of multiple MSPs, Zhang et
al. [17] proposed a privacy-preserving auction mechanism for
learning model as an NFT in Blockchain-driven Metaverse.
They employed an imperfect information Stackelberg game
to optimize the strategies of MUs and MSPs, and introduced
a multi-winner sealed-bid auction mechanism to enhance the
quality of FL-NFT. However, this approach primarily focuses
on modeling NFTs and overlooks the joint optimization of
computational and communication resources. Moreover, it fails
to evaluate the model’s value from multiple dimensions.

Inspired by the above existing works, this study focuses
on multi-MSP and multi-MU scenarios in vehicular metaverse
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Fig. 3. Workflow of the immersion-aware model trading framework3.

services. By assigning MUs the dual roles of service con-
sumers and model contributors, we build a low-cost, privacy-
preserving data support framework. This allows MUs to enjoy
immersive in-vehicle services (e.g., AR navigation, digital twin
interactions) while participating as distributed model contrib-
utors in service optimization. This framework continuously
incentivizes MUs to contribute high-value learning models
for metaverse services, thereby enhancing the overall service
experience.

III. SYSTEM MODEL

We first present the system overview of the immersion-
aware model trading framework in Section III-A. Next, we
introduce the FL mechanism adopted by our framework in
Section III-B and design the immersion metric of the learning
model in Section III-C.

A. System Overview

Fig. 3 illustrates the workflow of our immersion-aware
model trading framework, designed to enhance the immersive
and interactive AR experiences of MUs. MUs can contribute
learning models to the AR services of MSPs for better
immersive experiences. For example, services such as object
detection can be improved by training on images of streets,
pedestrians, and so on, captured by vehicles’ cameras. In this
way, AR services can be better applied to visible driving, with
more accurate and timely hazard warnings from windscreens.
The framework mainly consists of MSPs owned by different
companies (e.g., Meta, Nissan, and Google), an infrastructure
layer, and an interaction layer with the MUs that enjoy
vehicular metaverse services. MSPs are powered by various
technologies supporting vehicular metaverse services, such as
AI engines, AR/VR engines, metaverse trading engines. The
infrastructure layer with base stations (equipped with caches

3Image source: https://mixed-news.com/en/google-transforms-google-
maps-into-the-backbone-of-our-ar-future/, https://about.facebook.com/meta,
https://www.vanarama.com/blog/cars/4-ways-augmented-reality-will-
revolutionise-the-automotive-industry.
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TABLE I
DEFINITIONS OF NOTATION

Notation Definition
m,M Index of an MU, Number of MUs
n,N Index of an MSP, Number of MSPs
∆mn The average AoI of MU m’s model provided for MSP n
Vmn The IoM contributed by MU m to MSP n
fmn MU m’s computational resource used for MSP n
Bmn MU m’s communication resource used for MSP n
Xmn MU m’s training data set for MSP n
ωmn The potential value of MU m’s local data for MSP n
θm MU m’s local accuracy threshold

and edge servers) provides the basis of 5G/6G communication
services for the interactions among MUs and MSPs. MUs play
essential roles as both consumers and contributors to vehicular
metaverse services.

The framework is a multi-engine configuration, and this
paper focuses on two components: the trading engine and
the AI engine of the MSP. The trading engine is responsible
for incentivizing MUs to participate in mutually beneficial
collaborations with MSPs, providing them with a trading
platform to make their decisions (i.e., computational and com-
munication resource allocation of MUs and reward decisions
of MSPs). Then, each MU deciding to contribute utilizes the
FL mechanisms integrated into AI engines to provide learning
models for MSPs under the strategic guidance of the trading
results. The specific workflow of the framework involves the
following two phases.

Phase I (Incentive process): Initially, MSPs’ AI engines
broadcast their global models to all MUs in the vehicular
metaverse4 (① in Fig. 3). Then, the trading engines of MSPs
determine their digital currency prices per IoM, i.e., rewards to
MUs, and broadcast them to MUs (②). Next, MUs determine
their allocation of computational and communication resources
for contributing learning models to various MSPs based on
the IoM, costs, and rewards given by MSPs (③). Based on the
responses from MUs, the trading engines of MSPs adjust the
digital currency prices to maximize their own utilities. Steps
② and ③ are repeated until an agreement is reached among
MUs and MSPs.

Phase II (FL process): Each MU, guided by decisions
obtained through tradings, allocates computational resources
to local training based on different global models from MSPs
and generates local learning models for different MSPs (④).
Then, MUs upload their updated learning models to the corre-
sponding AI engines of MSPs by consuming communication
resources (⑤). Following this, AI engines aggregate models
from all MUs to update their global models and transmit them
to their AR/VR engines for utilization (⑥). Finally, the AR/VR
engines provide enhanced AR services to MUs (⑦). Steps ④-
⑦ are repeated until the guidance time T ends. To ease the
presentation, we summarize some important notations in Table
I.

4The FL global models owned by different MSPs we consider could
be object detection or classification models for intelligent terrain mapping,
intuitive road safety, visible driving, etc. Note that it is feasible to train on
multiple tasks with the same local data. For instance, for the same image,
intuitive road safety focuses on pedestrians and vehicles, while intelligent
terrain mapping focuses on landmarks and routes.
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Fig. 4. Illustration of the FL mechanism with n tasks for MU m.

B. FL Framework Mechanism Adopted

Here, we consider a set of M = {1, . . . ,M} MUs with the
capacities of local computation and a set of N = {1, . . . , N}
MSPs with FL synchronous tasks5. Each MSP initiates an
FL synchronous task with a virtual deadline τn(n ∈ N ).
The MUs can join FL to generate local learning models
and contribute to enhancing vehicular metaverse services. As
shown in Fig. 4, MU m provides learning models to different
MSPs simultaneously for a given time period T , meaning
multiple FL tasks can be processed in parallel. Moreover, the
data collected at the (r− 1)-th round is used as the local data
for training at the r-th round. Without loss of generality, we
consider that the trading decisions among MUs and MSPs are
made at the beginning of the period T .

In detail, let Xmn be the set of data samples for task n of
MU m as a set of input-output pairs

∑|Xmn|
i=1 (yi, zi), where

yi is an input sample vector with d features, zi is the labeled
output (i.e., ground truth) value of sample yi, and |Xmn| is
the size of set Xmn. The data, such as images of streets and
pedestrians, can be generated by high-definition cameras inside
and outside the vehicles. The steps involved in each iteration
r ∈ {1, 2, . . . , R} are as follows:

• Publishing Tasks : The AI engine of MSP n broadcasts
its global model ȷ(r)n (e.g., object detection models used in
AR services for visible driving and intuitive road safety)
to all MUs in the r-th round.

• Local Training: Each MU, for example, MU m, trains
ȷ
(r)
n with the most recently collected data X

(r)
mn by

stochastic gradient descent (SGD) within certain local
rounds. The number of local training rounds depends on
its local accuracy threshold.

• Uploading and Aggregation: MUs transmit their updated
local model ȷ(r)mn to the AI engine of MSP n. After
receiving all the updated models, the MSP n’s AI engine
aggregates them through the following weighted average:

ȷ(r+1)
n = ȷ(r)n +

M∑
m=1

|X(r)
mn|

|X(r)
n |

(ȷ(r)mn − ȷ(r)n ), (1)

5That is, the update time of the global model is limited by the slowest MU,
i.e., the AI engine of the MSP must wait to receive updated models from all
MUs before performing model aggregation. The advantages of synchronous
FL are high model accuracy and fast convergence [29].
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and then obtains the new global model ȷ(r+1)
n for the next

iteration.
• Model Utilization: After global aggregation, MSP n’s AR

engine obtains an updated global model that can be used
for corresponding 3D modeling and other functions [11].
The global rounds are iterated until a specific requirement
is met, such as reaching a certain level of accuracy or a
deadline.

C. Immersion Metric of Learning Model

MSPs determine the rewards for MUs based on the im-
mersion of the learning model (IoM) metric. Correspondingly,
MUs need to decide the IoMs of the models provided to
MSPs by allocating their computational and communication
resources to maximize the benefits. This process highlights the
key role of “IoM” in the interactions between the two parties,
serving as both an evaluation criterion and a basis for decision-
making. Unlike traditional FL and incentive mechanisms, in
vehicular metaverse scenarios with immersion requirements,
both the contribution and freshness of the learning model need
to be considered6, which will collectively affect the immersive
experience of AR services, i.e., whether virtual objects can be
placed in the physical world accurately and promptly. With
the above consideration, we propose the IoM, a metric that
jointly considers the contribution prediction Imn and the age
of information (AoI) ∆mn [30] to measure the value of a
learning model that MU m brought to the vehicular metaverse
service of MSP n, denoted as

Vmn = Imn(τn −∆mn), (2)

where the components are detailed as follows. In the rest of
this paper, we refer to the trading engine of MSP as MSP.

1) Contribution Prediction I: The contribution prediction
Imn from MU m to MSP n is determined by the accuracy
θm of the learning model, the total amount of training data
⌊ T
τn
⌋|Xmn|, and the potential value ωmn of local data. Prior

work [31] characterized the contribution of a learning model
in terms of a logarithmic function of the amount of local
training data. However, evaluating the contribution solely by
the training data size is one-sided, as there may be a large
amount of redundant data or the validity of the learning model
cannot be guaranteed. It is more practical to comprehensively
evaluate the amount of training data, model accuracy, and the
potential value of local data; thus, we denote Imn as

Imn =
ωmnϵ ln(1 + η⌊ T

τn
⌋|Xmn|)

θm
, (3)

where ⌊ T
τn
⌋ is the number of iterations that the task of

MSP n can be performed within T . ϵ and η are system
parameters from experiments as obtained in [32]. θm ∈ (0, 1)
characterizes the accuracy of local training as decided by the
MU. Here, θ → 0 means that a high-accuracy learning model
is available, while θ → 1 implies that the accuracy of the
learning model is low. The local data potential value ωmn

6For example, an MSP may receive fresher learning models but with lower
contributions, or less fresh learning models but with higher contributions.
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Fig. 5. The AoI evolution of the models sent from MU m to MSP n.

describes the difference between model predictions and true
labels, defined as

ωmn =
1

|Xmn|

|Xmn|∑
i=1

(ẑi − zi)
2, (4)

where ẑi denotes the inferred label from the current global
model and zi is its ground-truth label. If the value of ωmn is
large, it indicates that the current global model is not working
well on local data or there are unseen samples. Therefore,
updating the model by training on these data may lead to
better performance of the global model. If the value of ωmn

is small, it means that the current data has little potential to
further improve the global model since the knowledge of the
data has already been learned or the data size is small. Note
that to shorten the decision time, we use the potential value
of the initial local data to be a proxy for the average potential
value of all data within T . This is a reasonable approach when
T is not too long.

2) Age of Information ∆: The whole FL process involves
model training, uploading, and waiting, which together consti-
tute a complete cycle of model updating. From the perspective
of MSP n, the age evolution of the model contributed by MU
m is shown in Fig. 5. Here, the filled circles denote the time
instances when MU m starts training the learning model. The
intersections show the time instances when MSP n receives the
corresponding updated model, at which point the AoI drops
to the lowest. We denote that at time t, the generation time of
the last update received by MSP n from MU m is s(t). Then,
the instantaneous AoI of MU m’s learning model measured at
MSP n, ∆mn(t), is

∆mn(t) = t− s(t), (5)

which shows the elapsed time since the generation of the
latest updated model. A smaller instantaneous AoI means that
the latest model received is fresher at that time. To obtain a
comprehensive understanding of the overall freshness of model
updates over a certain period, we use average AoI to evaluate
the freshness of the models. With the aid of Fig. 5, the time-
averaged AoI of the learning model from MU m to MSP n
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can be expressed as

∆mn = lim
Z→∞

1

Z

∫ Z

0

∆mn(t) dt = lim
Z→∞

Z∑
r=1

Qmn
(r)

Z

=
1

2
τn + T c

mn + T t
mn,

(6)

where Qmn
(r) is the r-th trapezium under the curve. A lower

average AoI indicates that the updated models are generally
fresher over a long period.

Since MU m constantly collects data throughout the FL
process, the amount of training data collected for training in
each round is |Xmn| = xmτn, where xm denotes the data
(number of floats) collected per unit time. The cumulative time
T c
mn for local training is determined by the amount of training

data, computational resource fmn allocated to MSP n, and its
local accuracy threshold θm, which is equivalent to

T c
mn = log(1/θm)

xmτn
fmn

. (7)

A smaller value of θ indicates higher accuracy, but leads to a
higher MU cost, i.e., the number of local iterations, which is
upper bounded by log(1/θm) [33].

Furthermore, the upload time T t
mn is directly related to the

number of model parameters bmn and the resource Bmn (i.e.,
uplink bandwidth) used to communicate between MU m and
MSP n, defined as

T t
mn =

bmn

Bmn log2(1 + ςmn)
, (8)

where ςmn =
pt
mgmn

σ2 denotes the signal-to-noise ratio
(SNR) [34] for the communication between MU m and MSP
n. gmn and ptm are the corresponding channel gain and the
transmission power of MU m, respectively. σ2 is additive
white Gaussian noise (AWGN).

Finally, by substituting (7) and (8) into (6), ∆mn can be
expressed as

∆mn =
1

2
τn +

xmτn log(1/θm)

fmn
+

bmn

Bmn log2(1 + ςmn)
. (9)

IV. GAME FORMULATION

We first define the utility functions of MU m and MSP
n in Section IV-A and Section IV-B, respectively. Then,
we formulate the interactions among MUs and MSPs as an
equilibrium problem with equilibrium constraints (EPEC) in
Section IV-C, where the equilibrium criterion exists at both
the level of MUs and MSPs due to the conflicting interests
between them.

A. Utility of MU

We define the utility of MU m composed of the rewards
from MSPs and the cost incurred for contribution, which is
also affected by resource constraints and immersion require-
ments for consuming vehicular metaverse services. The cost
incurred due to local training and model uploading can be
expressed as

Cmn = cfm log(1/θm)fmn + cBmBmn, (10)

where cfm and cBm denote the cost factors of computa-
tional and communication resources, respectively. Let fm ≜
(fm1, fm2, . . . , fmn) and Bm ≜ (Bm1, Bm2, . . . , Bmn) be
the computational and communication allocation profiles of
MU m, respectively. Then, the utility maximization problem
for MU m within T can be formulated as

Problem 1.

max Φm(fm,Bm) =

N∑
n=1

(pmnVmn − Cmn),

s.t. C1 :

N∑
n=1

fmn < fmax
m ,

N∑
n=1

Bmn < Bmax
m ,

C2 : log(1/θm)
xmτn
fmn

+
bmn

Bmn log2(1 + ςmn)
≤ τn,

C3 :
Sm

fmax
m −

∑N
n=1 fmn

< T req,

(11)

where Sm indicates the minimum computational resource
required to enjoy other basic services. Constraints C1 and C3
indicate that the MU’s total computational and communication
resources are limited and cannot be fully used to contribute
learning models, given the MU’s demand for basic services.
Constraint C2 ensures that the total time for local training
and uploading cannot exceed the time constraint τn for each
round. The goal of each MU is to choose the optimal allocation
of computational fm and communication Bm resources to
maximize its utility. Note that Vmn must be greater than
0. This is because if Vmn ≤ 0 and MU m is involved
in contributing learning models, the utility is calculated as
pmnVmn − Cmn ≤ 0, resulting in MU m choosing not to
participate in the trading.

B. Utility of MSP

Each MSP has a gain function ψ associated with the IoM
to measure the benefits of all the learning models from MUs
to the service. In this paper, we adopt ψn = µn ln(1 +∑M

m=1 Vmn) as a monotonically increasing, differentiable,
strictly concave IoM function, which is a simplification of the
widely adopted function [35]. Let pn ≜ (p1n, . . . , pmn) and
p-n represent the reward profile of MSP n and all other MSPs
except MSP n, respectively. Then, the optimization problem
for the MSP is defined as

Problem 2.

max Ψn(pn,p-n) = ψn −
M∑

m=1

pmnVmn,

s.t. pmn > 0, n ∈ N ,m ∈ M,

(12)

where µn refers to the profit conversion coefficient [36] from
IoM, which is adjusted according to the AR services offered
by the different MSPs. Note that the other MSPs’ decisions p-n
are captured by the MUs’ responses. Moreover, when MSP n
determines its reward pn for different MUs, the MSP needs to
consider the rewards offered by other MSPs (i.e., p-n ) as well
as the strategies of all MUs (i.e., (fm,Bm),m ∈ M). This
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Fig. 6. The hierarchical structure of equilibrium problem with equilibrium
constraints (EPEC).

thereby leads to reward competition among MSPs. Therefore,
the optimization among MSPs can be considered as a non-
cooperative game, termed a multi-MSP rewarding game Ω as
follows.

Definition 1. A multi-MSP rewarding game Ω is a tuple Ω =
{N ,p,Ψ} defined by

• Players: The set of MSPs;
• Strategies: The reward decisions pn of any MSP n;
• Utilities: The vector Ψ = {Ψ1,Ψ2, . . . ,Ψn} contains the

utility functions of all the MSPs defined in (12).

C. Multi-MSP Multi-MU Game as EPEC

As shown in Fig. 6, MUs and MSPs negotiate allocation
strategies of computational and communication resources and
reward decisions to maximize their benefits. In the upper level,
MSPs determine the rewards they are willing to offer by
considering their cost, the responses of MUs, and the decisions
of other MSPs. In the lower level, each MU m gives the opti-
mal allocation response for computational and communication
resources by considering its resource constraints, cost, and
rewards from different MSPs. The objective of EPEC is to
find the equilibria at two levels, i.e., the point at which the
MSPs’ (leaders’) utilities are maximized given that the MUs
(followers) will choose their best responses. For the proposed
EPEC, the equilibria at two levels are defined as follows.

Definition 2. Let (f∗mn, B
∗
mn) and p∗mn denote the optimal

computational and communication resource allocation of MU
m ∈ M and the optimal reward decision of MSP n ∈ N ,
respectively. Then, the points (f∗mn, B

∗
mn) and p∗mn are the

equilibria at two levels if the following conditions hold:

Φm((f∗
m,B

∗
m),p∗

n) ≥ Φm((fm,Bm),p∗
n),∀m ∈ M,

Ψn

(
f∗
m(p∗

n,p
∗
−n),B

∗
m(p∗

n,p
∗
−n),p

∗
n,p

∗
−n

)
≥

Ψn

(
f∗
m(p∗

n,p
∗
−n),B

∗
m(p∗

n,p
∗
−n),pn,p

∗
−n

)
,∀n ∈ N ,

(13)

where p∗
−n denotes the optimal rewards offered by other MSPs.

In summary, the MSPs’ optimization problems are formu-

lated as the following EPEC problems:

max
pn

Ψn = ψn −
M∑

m=1

[
pmnImn

(
1

2
τn

− xmτn log(1/θm)

f∗mn

− bmn

B∗
mn log2(1 + ςmn)

)]
,

s.t.


pmn > 0, n ∈ N ,m ∈ M,

(f∗
m,B

∗
m) = argmaxΦm(fm,Bm),

s.t.C1, C2, C3.

(14)

To investigate the above EPEC, we address the lower level
(Problem 1) and the upper level (Problem 2) by using the
backward induction methods in the following section.

V. EPEC ANALYSIS AND SOLUTIONS

In this section, we utilize backward induction to analyze
the EPEC formulated in (14). Specifically, we prove the
existence and uniqueness of the equilibrium solutions at two
hierarchical levels: (1) the optimal allocation of computational
and communication resources for MUs (lower level), and (2)
the optimal reward decisions for MSPs (upper level).

A. Lower Level: Optimal Resource Allocation for MUs

In the lower level of EPEC, for any reward decisions p
given by MSPs, MU m aims to solve Problem 1 in (11)
to determine its optimal computational and communication
resource allocations, i.e., f∗

m and B∗
m, to maximize its utility.

Below, we analyze and derive the unique optimal allocation.

Definition 3. A maximization problem has a unique global
optimum if the following conditions are satisfied [37]: (1)
The objective function is strictly concave; (2) All constraints
(equality and inequality) are affine; and (3) The strategy space
is compact and convex.

Theorem 1. Problem 1 is strictly concave and has a unique
globally optimal solution in the lower level. That is, for
each MU m, there exists a unique resource allocation tuple
(f∗

m,B
∗
m) that maximizes its utility.

Proof. We first examine the Hessian matrix of MU m’s utility
Φm(fm,Bm) with respect to (fmn, Bmn). Let this Hessian
matrix be denoted by Hm, which can be block-diagonalized
as

Hm =

[
Hf

m 0
0 HB

m

]
. (15)

The block matrix Hf
m can be computed as the second-order

partial derivative of Φm(fm,Bm) with respect to fmn, i.e.,

Hf
m =

[
∂2Φm(fm,Bm)

∂fmn∂fmn′

]
n,n′∈N

= −diag
(
hfm1, h

f
m2 . . . , h

f
mn

)
< 0,

(16)

where hfmn = pmnImn
2xmτn
f3
mn

log(1/θm). Similarly, the block
matrix HB

m can be calculated by

HB
m =

[
∂2Φm(fm,Bm)

∂Bmn∂Bmn′

]
n,n′∈N

= −diag
(
hBm1, h

B
m2, . . . , h

B
mn

)
< 0,

(17)
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where hBmn = 2bmnpmnImn

B3
mn log2(1+ςmn)

.
We find that Hf

m and HB
m are both negative semi-definite.

Hence, Hm is negative semi-definite, implying Φm(fm,Bm)
is strictly concave. Since the constraints of Problem 1 are
affine and the strategy space is closed and bounded, Defi-
nition 3 ensures the existence of a unique global optimum
(f∗

m,B
∗
m).

Consequently, MU m has a unique best-response resource
allocation for each MSP by solving Problem 1. From the
Karush–Kuhn–Tucker (KKT) conditions, we establish the fol-
lowing proposition.

Proposition 1. Given the digital currency price offered
by the MSPs and the Lagrange multipliers induced by the
constraints, the optimal computational resource fmn allocated
for MSP n by MU m satisfies:

f∗mn =


√

pmnImnxmτn
cfm

, pmn ≥ F 2

Imn
,

F
√

xmτn
cfm

, 0 < pmn <
F 2

Imn
,

0, otherwise,

(18)

and the optimal communication bandwidth Bmn is:

B∗
mn =


√

pmnImnbmn

cBm log2(1+ςmn)
, pmn ≥ F 2

Imn
,

F
√

bmn

cBm log2(1+ςmn)
, 0 < pmn <

F 2

Imn
,

0, otherwise,

(19)

where F = log(1/θm)
√

xmcfm
τn

+

√
bmncBm

τn
√

log2(1+ςmn)
. For the

detailed proof of Proposition 1, please refer to Appendix A.
According to Proposition 1, the optimal strategy for each

MU m is influenced by five main factors: pmn, Imn, cfm,
cBm and τn. Specifically, MU m focuses on the rewards paid
by MSPs, and the MU tends to put more computational
and communication resources into the contribution when p
increases. Moreover, MUs are more willing to invest more
resources when the potential contribution prediction Imn is
higher, resulting in greater benefits. In addition, the virtual
deadline τn set by the MSP n determines the minimum criteria
for resource allocation.

B. Upper Level: Optimal Reward Equilibrium among MSPs

In the upper level of the EPEC, each MSP n competes with
other MSPs and determines its reward vector pn. Specifically,
given the responses (f ,B) from all MUs, and other MSPs’
decisions p-n, the optimal reward decision pn of MSP n can
be obtained by solving Problem 2, defined as follows.

Proposition 2. Given other MSPs’ reward vectors p-n, the
optimal strategy of MSP n is

p∗
n = arg max

pmn>0
Ψn (f

∗
n(pn,p−n),B

∗
n(pn,p−n),p−n) .

(20)
Then, we analyze the existence and uniqueness of the

optimal reward decision equilibrium in Theorem 2.

Theorem 2. There exists a unique Nash equilibrium in the
multi-MSP rewarding game Ω, ensuring a unique optimal set
of reward decisions {p∗

n}n∈N .

Proof. We define the Hessian matrix of Ψn with respect to
its reward vector pn as (Λn + Hn). The matrix Λn =

diag
(

∂2Ψn

∂p2
1n
, . . . , ∂

2Ψn

∂p2
mn

)
and the second-order partial deriva-

tive matrix Hn is expressed by

Hn =


0 ∂2Ψn

∂p1n∂p2n
· · · ∂2Ψn

∂p1n∂pmn

∂2Ψn

∂p2n∂p1n
0 · · · ∂2Ψn

∂p2n∂pmn

...
...

. . .
...

∂2Ψn

∂pmn∂p1n

∂2Ψn

∂pmn∂p2n
· · · 0

 , (21)

where

∂2Ψn

∂p2mn

= µn
V ′′
mn(1 +

∑M
m=1 Vmn)− (V ′

mn)
2

(1 +
∑M

m=1 Vmn)2

− 2V ′
mn − pmnV

′′
mn < 0,∀m ∈ M,

(22)

∂2Ψn

∂pmn∂pm′n
=− µn

V ′
mnV

′
m′n

(1 +
∑M

m=1 Vmn)2
< 0,

∀m ∈ M,m ̸= m′.

(23)

The proof of ∂2Ψn

∂p2
mn

< 0 and ∂2Ψn

∂pmn∂pm′n
< 0 can

be found in Appendix B. We randomly choose a vector
h ∈ RM×1 with elements not all 0. For Λn, it is easy
to see that hTΛnh =

∑
m

∂2Ψn

∂p2
mn

(hm)2 < 0. Furthermore,
hTHnh = −µn

(1+
∑

m Vmn)2
(
∑

m hmV ′
mn)

2
< 0. Thus, we have

hT (Λn+Hn)h = hTΛnh+hTHnh < 0, indicating that the
utility function Ψn is strictly concave. So far, the uniqueness of
the Nash equilibrium [37] solution to the multi-MSP rewarding
game Ω has been proved.

Utilizing Theorem 1 and Theorem 2, we prove the ex-
istence and uniqueness of the hierarchical equilibrium in the
proposed EPEC model. Concretely, each MU has a unique
best-response resource allocation strategy in reaction to any
given MSP rewards, while each MSP determines a unique
optimal pricing to maximize its own utility given the rewards
of other MSPs.

Although the backward induction approach theoretically
ensures an equilibrium solution to (14), solving it in real-world
vehicular metaverse environments can be challenging due to
dynamic network conditions and limited system knowledge
(e.g., private cost parameters). In the following section, we
address these practical issues by introducing a fully distributed
reinforcement learning approach, enabling MSPs to adaptively
and privately optimize their reward decisions in real time.

VI. DYNAMIC REWARD STRATEGY FOR MSPS

According to the EPEC proven above, it is possible to obtain
an optimal solution. However, the optimal approach faces the
following practical challenges: (i) In a time-varying network,
the optimal approach is time-consuming due to the complexity
of (12), which is a non-linear problem with a complicated
structure. Additionally, the reward decisions of MSPs are
tightly coupled. (ii) MSPs must have prior knowledge of
private information about MUs (e.g., cost factors) to determine
their rewards, which raises privacy concerns for MUs. To
address these challenges, we further formulate the multi-MSP
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Algorithm 1: Entire Process of the Framework.

1 Input: Action threshold [pmin, pmax] and number of
episodes T ;

2 Initialization: local observation sn, actor network αn,
critic network βn, and episode buffer Dn for each
MSP agent n ∈ N ;

3 # Trading process using MDDR:
4 for episode = 1, 2, . . . , T do
5 Concurrently for each MSP agent n ∈ N :
6 for epoch k = 1, . . . , |Dn| do
7 Observe space sn(k);
8 Choose price pn(k) ∈ [pmin, pmax] by

sampling from its current policy παn(sn(k));
9 Broadcast reward decisions to MUs;

10 Interact with the environment and receive
responses from the MUs;

11 Calculate utility according to (12) ;
12 Store transition

en(k) = [sn(k),pn(k),Un(k), sn(k + 1)];
13 end
14 Update actor network αn and critic network βn

for each MSP agent n;
15 Clear the episode buffer Dn for each MSP agent n;
16 end
17 Return: Reward decisions p of MSPs and resource

allocation [f ,B] of MUs;

18 # FL training guided by trading results within time
T :

19 foreach MSP agent n ∈ N do
20 foreach MU m ∈ M do
21 Based on the trading results, utilize fmn and

Bmn to perform the local FL task for MSP n,
and then upload the model to MSP n.

22 end
23 Aggregate received local models and issue an

updated global model;
24 Supply the updated model to the AR engine;
25 end

rewarding game as a multi-agent Markov decision process
(MAMDP) [35], which adapts to dynamic channel conditions.
In this framework, each MSP is modeled as an individual agent
that makes intelligent reward decisions.

A. MAMDP for Multi-MSP Rewarding Game Ω

We train the reward model based on the state-of-the-
art policy gradient method proximal policy optimization
(PPO) for the reasons described in [38]. The MAMDP =
⟨Sn,An,Pn,Un⟩ for multi-MSP rewarding game is composed
of state space Sn ≜ {sn}, action space An ≜ {pn}, state
transition probability Pn ≜ {Pn}, and utility Un ≜ {Ψn}.
For the MSP agent, the local observation contains the chan-
nel information and the responses of MUs, all of which
are captured in the IoM of (2). Thus, we set the local
observation of MSP n at the k-th stage game defined as
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Fig. 7. The utilities of MSPs.

sn(k) = [V1n(k), V2n(k), . . . , Vmn(k)], and the state of the
environment is S(k) = [s1(k), . . . , sn(k)]. At the k-th stage
game, MSP n observes a state sn(k) and determines an action
pn(k) within [pmin, pmax]. When an action pn(k) is applied
to state sn(k), the agent n receives a utility Un(k) from
the environment. Taking into account the competition among
agents, we define the reward Un for each MSP by (12). The
state transition probability P (sn(k + 1) | sn(k),pn(k)) leads
to the new state sn(k + 1) after executing an action pn(k) at
the state sn(k).

B. The Multi-agent DRL-based Dynamic Reward (MDDR)

In our work, each MSP agent operates the DRL-based
dynamic reward algorithm in a fully distributed manner. Algo-
rithm 1 shows the pseudocode for model trading using MDDR
under a dynamic environment (Lines 4-17) and the guidance
for the FL process (Lines 19-25).

Trading process: At the start of the game, each MSP n
initializes its actor αn and critic network βn, and episode
buffer Dn for each MSP agent n (Line 2). Each agent n feeds
the observed information into the policy network αn to derive
its reward policy (Lines 7-8). Subsequently, each MSP agent n
broadcasts its reward decisions, interacts with the environment,
receives feedback from the MUs, calculates its utility, and
stores the experience in the episode buffer Dn (Lines 9-12).
The experience is collected through this interactive process
(Lines 7-12) until the buffer Dn is full. Once the buffer is
full, the critic network βn evaluates the actor network αn

based on the collected experience and updates it accordingly
(Line 14). Finally, the episode buffer is cleared in preparation
for the next episode (Line 15). The game will terminate when
the maximum number of training episodes is reached and then
the trading results will be obtained.

FL training guided by trading results: After obtaining
the trading results (MSPs’ reward decisions p and resource
allocation (f ,B)), MUs and MSPs enter the FL phase. MUs
follow the resource allocation scheme for local training and
model uploading (Line 21). Then, the MSP is responsible for
aggregating and updating the global model (Line 23). Finally,
the updated model is provided for use by the AR engine (Line
24). This process iterates multiple times until the total FL time
T is reached. During real-time interactions, the MSP’s AR
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Fig. 8. The convergence processes of MDDR under dynamic networks.
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Fig. 9. Evaluation results for MNIST.

TABLE II
THE UTILITIES OF THREE REWARD APPROACHES

MSP 1 MSP 2 MSP 3 Total
Optimal 2169.99 2564.56 3035.96 7770.51
MDDR 2169.11 2563.95 3034.94 7768.00
MAPPO 2169.23 2563.96 3035.26 7768.45

service immersion and quality can be enhanced by utilizing
the updated model.

C. The Complexity and Convergence of MDDR

The complexity of MDDR is mainly influenced by the
structure of the actor-critic network. According to [39],
the total computational complexity of the fully connected
layer can be expressed as the number of multiplications
O(

∑U
u=1 ϱu · ϱu−1), where ϱu is the number of neurons

in the u-th hidden layer. In this work, each agent has its
actor-critic network, structured as [5, 256, 10] and [5, 256, 1],
respectively. Therefore, its complexity can be expressed as
O(5× 256 + 256× 10 + 5× 256 + 256× 1) without burden
on the MSP. After several attempts, the MDDR can achieve
convergence [40] (as per Fig. 7 and Table II) with a suitable
set of hyper-parameters.

VII. PERFORMANCE EVALUATION

First, we verify the near-optimal performance of MDDR.
Then, to evaluate the effectiveness of the proposed framework,
we compare its performance with benchmark schemes in
object detection and classification for AR services through FL.

A. Simulation Settings

We conduct experiments on the MNIST dataset with
ResNet-18 and the GTSRB dataset with Faster R-CNN. The
GTSRB was recorded during daytime driving on different
types of roads in Germany for vehicle AR scenario test-
ing [41]. We set the number of MUs as M = 5 and the
number of MSPs as N = 3. The configurations of the max-
imum computational and communication resource for each
MU are randomly generated from the range [3, 5]GHz and
[1, 4]MB [42]. For local training of MUs, we adopt the SGD
optimizer with momentum = 0.9 and learning rate = 0.001.
For model aggregation of MSPs, we employ the Federated
Averaging (FedAvg) algorithm, applying equal weights to the
updates from all participants. The trading guidance time T
for MNIST and GTSRB are 30s and 1, 200s, respectively. All
baseline methods use the same settings as ours.
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Fig. 10. Evaluation results for GTSRB.

TABLE III
TIME COMPARISON OF FIVE SCHEMES FOR ACHIEVING THE SAME PERFORMANCE.

Schemes
MNIST GTSRB

Training Time to reach 90% Accuracy (s) Training Time to reach 50% mAP (s) Training Time to reach 70% mAP@50 (s)
MSP 1 MSP 2 MSP 3 MSP 1 MSP 2 MSP 3 MSP 1 MSP 2 MSP 3

immersion-aware 15.23 13.09 7.59 513.16 581.09 623.89 418.28 447.69 451.27
x based 17.79 18.03 19.80 812.53 898.59 1061.50 596.57 679.91 890.47
w based 30+ 24.04 10.28 1064.83 1175.58 1200+ 774.09 953.50 1013.89

w x based 23.20 19.08 12.34 901.61 1190 1194 596.35 848.68 932.73
fixed 30+ 30+ 30+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+

Note: 30+ or 1200+ indicates that the scheme required more than 30 seconds or 1200 seconds, respectively, to achieve the target accuracy, exceeding
the guideline time for the trading results.

B. Benchmark Schemes

To our knowledge, there are no comparable solutions to the
model trading problem in the vehicular metaverse. Therefore,
under the uniform rewards of MSPs, we develop and extend
four benchmark schemes for multi-MSP and multi-MU sce-
narios while meeting FL deadlines and resource constraints of
devices.

• x based: Inspired by the incentive mechanism of the
Stackelberg game for federated learning [31], the MU
allocates computational and communication resources
based on the amount of data involved in local training.

• w based: The MU adjusts the resource allocation accord-
ing to the inference loss [43], i.e., the potential value of
local data in our work.

• w x based: Combining the x based and w based de-
signs, the MU allocates resources considering both the
data size and the potential value of data.

• fixed: Taking into account the differences in performance
of the various devices that exist in reality, we randomly
allocate a fixed set of computational and communication
resources to reflect the heterogeneity of devices.

C. Performance Evaluation of MDDR

First, we consider a relatively static communication en-
vironment (fixed channel conditions) to show the effective-
ness of MDDR compared to the optimal solution and the
general multi-agent depth approximation policy optimization
(MAPPO) approach. We trained our proposed MDDR and
MAPPO until convergence, and the results are shown in Fig. 7
and Table II. We find that both MDDR and MAPPO achieve
good results, but MAPPO slightly outperforms MDDR. This
is because MAPPO is a centrally controlled distributed ex-
ecution [44] that can utilize more information for decision
making. However, this approach is not suitable for non-
cooperation due to the need to share parameters among MSPs.
For the fully distributed MDDR, it is more suitable for non-
cooperative scenarios. The reason is that in MDDR, each agent
has a self-contained actor-critic network, and information is
not required to be shared. This suggests that the approach
can achieve considerable utility while preserving privacy and
saving communication costs significantly. Then, we deploy
the MDDR in dynamic communication environments where
channel conditions change over time. The behaviors of each
MU and MSP in the trading are shown in Figs. 8(a), 8(b), 8(c)
and 8(d), reflecting that the MDDR can converge rapidly and
show good stability in dynamic network environments.
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D. Benchmark Comparison

Figs. 9(a), 9(b), and 9(c) show the performance im-
provement in classification accuracy over time, where the
immersion-aware outperforms the other schemes. This is
because immersion-aware utilizes IoM to incentivize MUs
to allocate computational and communication resources for
providing learning models to MSPs. The IoM metric not only
evaluates the freshness and accuracy of the model but also
considers the amount and potential value of raw data used for
training. As a result, resource-limited MUs are motivated to
contribute more resources, providing valuable learning models
to MSPs at an accelerated pace. In contrast, baseline schemes
like x based, w based and w x based struggle to offer ade-
quate incentives for MUs to contribute their available resources
due to uniform rewards. For example, if a given MU has
already reached the maximum resource it can contribute when
the reward is p, then even if p is increased further, the MSP’s
gains will be impaired rather than increased. Consequently, the
uniform reward p will not be increased, leading to a situation
where other MUs with available resources will not contribute
more resources for providing higher-value learning models.

In addition, Figs. 9(a), 9(b), and 9(c) reveal that MSP 3
performs better than MSP 1 and MSP 2. For example, at the
10th second, the accuracy of MSP 3 is about 88%, which
is 14% and 3% higher than those of MSP 1 and MSP 2,
respectively. This is because the potential value ω is higher
for MSP 3, leading to more rewards being given by MSP 3.
As a result, the MUs will allocate more computational and
communication resources to provide learning models for MSP
3 than for MSP 1 and MSP 2. For the three different MSPs,
some fluctuations are normal for model training (e.g., at time
10s). It can be seen that the effect of fixed is the worst due
to synchronous FL, which is limited by the MU with the least
resource. Meanwhile, it is clear from Figs. 9(d), 9(e) and 9(f)
that the effectiveness of the five schemes is influenced by
IoM. With the higher IoM, the performance is improved faster,
resulting in a better immersive experience. Yet, the IoM of
w based in Fig. 9(e) is higher than x based and w x based
but the performance improvement rate is not as fast as them.
The reason is that the IoM here represents the sum of all
IoM from MUs, whereas the rate of performance improvement
is hampered by the worst MU. Additionally,from Figs. 9(b)
and 9(c), it can be observed that both w x based and w based
perform better when compared to Fig. 9(a). The main reason
is the higher potential value ω associated with MSP 2 and
MSP 3.

For object detection on GTSRB, Figs. 10(a), 10(b) and 10(c)
show the mean average precision (mAP) and Table III gives
the mAP@50 (The value of mAP when the intersection over
union (IOU) threshold is larger than 0.5) results. We observe
that compared with MNIST, the performance enhancement for
object detection is slower due to the complexity of the detec-
tion model. Specifically, it takes at least 513.16 seconds to
achieve a 50% mAP using the immersion-aware method. Our
research introduces the flexibility to adjust decision guidance
time, making it adaptable to various task types. Meanwhile,
Figs. 10(d), 10(e), 10(f) and Table III demonstrate that MSP

1 with greater IoM takes less time to achieve the same mAP,
which indicates that IoM works well to capture immersion.
For instance, MSP 1 has the highest IoM, and the time that
it takes to reach 50% mAP is 513.16s, which is 67.93s and
110.73s less than those of MSP 2 and MSP 3, respectively.

The comparison results validate the advantages of the pro-
posed trading framework, which outperforms other schemes by
improving IoM by 38.3% and 37.2% and reducing the training
time to reach the target accuracy by 43.5% and 49.8%, on
average, for the MNIST and GTSRB datasets, respectively.

VIII. CONCLUSION

To facilitate the development of vehicular metaverse ser-
vices, we propose an immersion-aware model trading frame-
work that incorporates FL to incentivize MUs to contribute
locally trained data for AR services such as object detection
and classification. Specifically, we construct an EPEC problem
with MSPs as leaders and MUs as followers to achieve an
equilibrium among their interests. A new metric called “IoM”
is designed to comprehensively evaluate the enhancement
brought by the learning models of MUs for AR services.
In addition, considering the competitive relationship among
MSPs and the dynamic network environment, we develop a
fully distributed MDDR approach to obtain the reward deci-
sions of MSPs. Extensive simulations on AR-related vehicle
and MNIST datasets demonstrate that the proposed framework
enables more efficient and immersive AR services in the
vehicular metaverse.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. First, we transform Problem 1 into an unconstrained
optimization problem using the Lagrangian dual method [45],
[46]. The Lagrangian function associated with MU m is
formulated as

Lm (fm,Bm,pm, λm, βm, δmn, γm) =
∑
n

pmnVmn

−
∑
n

[
cfmfmn log(1/θm) + cBmBmn

]
− λm(

∑
n

fmn − fmax
m )− βm(

∑
n

Bmn −Bmax
m )

−
∑
n

δmn[log(1/θm)
xmτn
fmn

+
bmn

Bmn log2(1 + ςmn)
− τn]

− γm[Sm − T req(fmax
m −

∑
n

fmn)],

(24)
where λm ≥ 0, βm ≥ 0, δmn ≥ 0 and γm ≥ 0 are the
Lagrangian dual variables corresponding to constraints C1, C2
and C3, respectively. Then, the first-order derivative of Lm

with respect to fmn and Bmn can be derived as

∂Lm

∂fmn
= pmnImn

xmτn log(1/θm)

f2mn

− cfm log(1/θm)

− λm + δmn log(1/θm)
xmτn
f2mn

− γmT
req,

(25)
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and
∂Lm

∂Bmn
= pmnImn

bmn

B2
mn log2(1 + ςmn)

− cBm − βm

+ δmn
bmn

B2
mn log2(1 + ςmn)

.

(26)

From (25) and the constraints in (11), the Karush-Kuhn-
Tucker (KKT) [47] conditions are given by

∂Lm

∂fmn
= 0, λm(

∑
n

fmn − fmax
m ) = 0,

δmn[log(1/θm)
xmτn
fmn

+
bmn

Bmn log2(1 + ςmn)
− τn] = 0,

γm[Sm − T req(fmax
m −

∑
n

fmn)] = 0,

λm, δmn, γm ≥ 0, C1, C2, C3.
(27)

Since Sm < T req (fmax
m −

∑
n fmn) and

∑
n fmn <

fmax
m , we can obtain λm = 0 and γm = 0. Furthermore,
∂Lm

∂fmn
= 0 can be converted to

(pmnImn + δmn)
xmτn
f2mn

− cfm = 0. (28)

Similarly, the KKT conditions for Bmn are obtained as

∂Lm

∂Bmn
= 0, βm(

∑
n

Bmn −Bmax
m ) = 0,

δmn[log(1/θm)
xmτn
fmn

+
bmn

Bmn log2(1 + ςmn)
− τn] = 0,

βm, δmn ≥ 0, C1, C2.
(29)

Since
∑

nBmn < Bmax
m , we can obtain βm = 0. Further-

more, ∂Lm

∂Bmn
= 0 can be converted to

(pmnImn + δmn)
bmn

B2
mn log2(1 + ςmn)

− cBm = 0. (30)

Then, based on the value of δmn, the optimal allocation
of computation and communication resources exists in the
following two cases:

• (δmn = 0): According to (28) and (30), we have

fmn =

√
pmnImnxmτn

cfm
, Bmn =

√
pmnImnbmn

cBm log2(1 + ςmn)
.

(31)
• (δmn > 0): Substituting fmn and Bmn into
δmn

[
log(1/θm)xmτn

fmn
+ bmn

Bmn log2(1+ςmn)
− τn

]
= 0, we

can get

δmn = F 2 − pmnImn,

F = log(1/θm)

√
xmc

f
m

τn
+

√
bmncBm

τn
√
log2(1 + ςmn)

.
(32)

Next, bring δmn into fmn and Bmn, we have

fmn = F

√
xmτn

cfm
, Bmn = F

√
bmn

cBm log2(1 + ςmn)
.

(33)

APPENDIX B
PROOF OF ∂2Ψn

∂p2
mn

< 0 AND ∂2Ψn

∂pmn∂pm′n
< 0

Proof. First, we need to compute ∂fmn

∂pmn
, ∂2fmn

∂p2
mn

, ∂Bmn

∂pmn
, and

∂2Bmn

∂p2
mn

to obtain the values of V ′
mn and V ′′

mn. From (28), we

can obtain ∂fmn

∂pmn
and ∂2fmn

∂p2
mn

, the steps of which are shown as
follows. The first-order derivative of ∂Lm

∂fmn
= 0 with respect

to pmn is expressed as Imn
xmτn
f2
mn

− 2(pmnImn + δmn)
xmτn
f3
mn

·
∂fmn

∂pmn
= 0. Consequently, we can obtain

∂fmn

∂pmn
=

Imnfmn

2(pmnImn + δmn)
> 0. (34)

The second-order derivative of ∂Lm

∂fmn
= 0 with respect to

pmn is expressed as

∂2fmn

∂p2mn

=
Imn

∂fmn

∂pmn
(pmnImn + δmn)− I2mnfmn

2(pmnImn + δmn)2
, (35)

by substituting (34) into (35), we have

∂2fmn

∂p2mn

=
−I2mnfmn

4(pmnImn + δmn)2
< 0. (36)

Likewise, we derive ∂Bmn

∂pmn
and ∂2Bmn

∂p2
mn

with the following
steps based on (30). The first-order derivative of ∂Lm

∂Bmn
= 0

with respect to pmn is expressed as Imn
bmn

B2
mn log2(1+ςmn)

−
2(pmnImn + δmn)

bmn

B3
mn log2(1+ςmn)

· ∂Bmn

∂pmn
= 0. Accordingly,

we have
∂Bmn

∂pmn
=

ImnBmn

2(pmnImn + δmn)
> 0. (37)

Similarly, we obtain the second-order derivative of ∂Lm

∂Bmn
=

0 with respect to pmn as

∂2Bmn

∂p2mn

=
Imn

∂Bmn

∂pmn
(pmnImn + δmn)− I2mnBmn

2(pmnImn + δmn)2
, (38)

by substituting (37) into (38), we have

∂2Bmn

∂p2mn

=
−I2mnBmn

4(pmnImn + δmn)2
< 0. (39)

Based on (34), (36), (37), and (39), we can easily infer
that V ′

mn > 0 and V ′′
mn < 0, as shown in (40). Then, we

can obtain ∂2Ψn

∂pmn∂pm′n
< 0. For ∂2Ψn

∂p2
mn

, We substitute the
specific expressions for V ′

mn and V ′′
mn into (22) and obtain the

following result as shown in (41). Next, we randomly choose a
vector h ∈ RM×1 with elements not all 0. For Λn, it is easy
to see that hTΛnh =

∑
m

∂2Ψn

∂p2
mn

(hm)2 < 0. Furthermore,
hTHnh = −µn

(1+
∑

m Vmn)2
(
∑

m hmV ′
mn)

2
< 0. Thus, we have

hT (Λn+Hn)h = hTΛnh+hTHnh < 0, indicating that the
utility function Ψn is strictly concave. So far, the uniqueness of
the Nash equilibrium [37] solution to the multi-MSP rewarding
game Ω has been proved.
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V ′
mn =

∂Vmn

∂pmn
= Imn

(
xmτn log(1/θm)

f2mn

· ∂fmn

∂pmn
+

bmn

B2
mn log2(1 + ςmn)

· ∂Bmn

∂pmn

)
> 0,

V ′′
mn =

∂2Vmn

∂p2mn

= Imn

[
−2xmτn log(1/θm)

f3mn

· (∂fmn

∂pmn
)2 +

xmτn log(1/θm)

f2mn

· ∂
2fmn

∂p2mn

− 2bmn

B3
mn log2(1 + ςmn)

· (∂Bmn

∂pmn
)2 +

bmn

B2
mn log2(1 + ςmn)

· ∂
2Bmn

∂p2mn

]
< 0.

(40)

∂2Ψn

∂p2mn

= −

4a1I
2
mnδmn + a1I

3
mnpmn

4fmn(δmn + Imnpmn)2
+

4bmnI
2
mnδmn + bmnI

3
mnpmn

4a2Bmn(δmn + Imnpmn)2
+ I2mn

(
a1a2ImnBmn+bmnImnfmn

2a2fmnBmn(δmn+Imnpmn)

)2

(1 +
∑

m Vmn)2

+
3I3mn(a1a2Bmn + bmnfmn)

4a2fmnBmn(δmn + Imnpmn)2(1 +
∑

m Vmn)

]
< 0,where a1 = xmτn log(1/θm), a2 = log2(1 + ςmn).

(41)
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